Implicative algebras: a new foundation for forcing and realizability

Alexandre Miquel

July 21th, 2016 - Piriápolis

Introduction

Intro

- Krivine's classical realizability is a complete reformulation of Kleene realizability that takes into account classical reasoning
 - Based on Griffin '90 discovery:

call/cc :
$$((\phi \Rightarrow \psi) \Rightarrow \phi) \Rightarrow \phi$$
 (Peirce's law)

New models for PA2 and ZF (+ DC)

[Krivine 03, 09, 12]

- Many connections between classical realizability and Cohen forcing
 - Combination of classical realizability and forcing + Generalization to classical realizability algebras [Krivine 11, 12]
 - Computational analysis of Cohen forcing

[M. 11]

Fascinating model-theoretic perspectives

[Krivine 12, 15]

Classical realizability = non commutative forcing

• This talk: An attempt to define a simple algebraic structure that subsumes both forcing and intuitionistic/classical realizability

The significance of classical realizability

- Tarski models: $\llbracket \phi \rrbracket \in \{0, 1\}$
 - Interprets classical provability

(correctness/completeness)

- Intuitionistic realizability: $\llbracket \phi \rrbracket \in \mathfrak{P}(\Lambda)$

[Kleene 45]

- Interprets intuitionistic proofs
- Independence results in intuitionistic theories
- Definitely incompatible with classical logic

[Cohen 63]

- Cohen forcing: $[\![\phi]\!] \in \mathfrak{P}(C)$ Independence results, in classical theories (Negation of continuum hypothesis, Solovay's axiom, etc.)
- Boolean-valued models: $\llbracket \phi \rrbracket \in \mathcal{B}$

[Scott, Solovay, Vopěnka]

• Classical realizability: $\llbracket \phi \rrbracket \in \mathfrak{P}(\Lambda_c)$

[Krivine 94, 01, 03, 09, 11-]

- Interprets classical proofs
- Generalizes Tarski models... and forcing!

- In Boolean/Heyting-valued models (or forcing):
 - conjunction interpreted as a meet/intersection...
 - universal quantification interpreted as an infinitary intersection
 amounts to an infinitary conjunction
- In intuitionistic/classical realizability:
 - conjunction interpreted as a Cartesian product
 - universal quantification interpreted as an infinitary intersection

	$\lor = A = U$	$\wedge = \times, \forall = \cap$
Int. logic	Heyting-valued models (Kripke forcing)	Int. realizability
Class. logic	Boolean-valued models (Cohen forcing)	Class. realizability

Plan

- Introduction
- 2 Implicative structures
- Separation
- 4 The implicative tripos
- Conclusion

Plan

- Introduction
- 2 Implicative structures
- Separation
- The implicative tripos
- Conclusion

Definition (Implicative structure)

An implicative structure is a triple $(\mathscr{A}, \preccurlyeq, \rightarrow)$ where

- (1) (\mathcal{A}, \preceq) is a complete (meet semi-)lattice
- (2) $(\rightarrow): \mathcal{A}^2 \rightarrow \mathcal{A}$ is a binary operation such that:

(2a)
$$a' \preccurlyeq a$$
, $b \preccurlyeq b'$ entails $(a \rightarrow b) \preccurlyeq (a' \rightarrow b')$ $(a, a', b, b' \in \mathscr{A})$

(2b)
$$\bigwedge_{b \in B} (a \to b) = a \to \bigwedge_{b \in B} b$$
 (for all $B \subseteq \mathscr{A}$)

- Write \perp (resp. \top) the smallest (resp. largest) element of \mathscr{A}
- When $B = \emptyset$, axiom (2b) gives: $(a \to \top) = \top$ $(a \in \mathscr{A})$

Examples of implicative structures

Complete Heyting algebras

 Recall that a Heyting algebra is a bounded lattice (H, ≼) that has relative pseudo-complements

$$a \to b := \max\{c \in H : (c \downarrow a) \preccurlyeq b\}$$
 (Heyting's implication)

for all $a, b \in H$, so that we get the adjunction:

$$(c \curlywedge a) \preccurlyeq b \Leftrightarrow c \preccurlyeq (a \rightarrow b)$$
 (Heyting's adjunction)

Heyting algebras are models of the intuitionistic propositional calculus. Boolean algebras are the "classical" Heyting algebras, in which $\neg \neg a = a$ for all $a \in H$

• When a Heyting algebra (H, \preccurlyeq) is complete (i.e. has all infinitary meets and joins), it induces an implicative structure $(H, \preccurlyeq, \rightarrow)$

Complete Boolean algebras (as a particular case of compl. Heyting algebras)

Total combinatory algebras

• Each total combinatory algebra (P, \cdot, k, s) induces an implicative structure $(\mathscr{A}, \preccurlyeq, \rightarrow)$ defined by

```
\bullet \mathscr{A} := \mathfrak{V}(P)
                                                                              (sets of combinators)
• a \leq b := a \subseteq b
                                                                                             (inclusion)
• a \rightarrow b := \{z \in P : \forall x \in a, z \cdot x \in b\}
                                                                              (Kleene's implication)
```

When application is partial, we only get a quasi-implicative structure (cf next slide)

Abstract Krivine structures

Each abstract Krivine structure (AKS)

$$(\Lambda, \Pi, \bot, \emptyset, push, store, K, S, \infty, PL)$$

induces an implicative structure $(\mathscr{A}, \preccurlyeq, \rightarrow)$ defined by:

•
$$\mathscr{A} := \mathfrak{P}(\Pi)$$
 (sets of stacks)
• $a \leq b := a \supseteq b$ (reverse inclusion)
• $a \to b := a^{\perp} \cdot b$ (Krivine's implication)

Relaxing the definition

In some situations, it is desirable to have $(a \to \top) \neq \top$

Definition (Quasi-implicative structure)

Same definition as for an implicative structure, but axiom

only required for the non-empty subsets $B \subseteq \mathscr{A}$

Examples:

- Each partial combinatory algebra (P, \cdot, k, s) more generally induces a quasi-implicative structure: $(\mathfrak{P}(P), \subseteq, \rightarrow)$
 - This structure is an implicative structure iff application \cdot is total
- Usual notions of reducibility candidates (Tait, Girard, Parigot, etc.) induce quasi-implicative structures (built from the λ -calculus)

Implicative structures

• The Curry-Howard correspondence:

Syntax: Proof = Program : Formula = Type

Semantics: Realizer \in Truth value

• But in most semantics, we can associate to every realizer t its principal type [t], i.e. the smallest truth value containing t:

 $t: A \text{ (typing)} \quad \text{iff} \quad [t] \subseteq A \text{ (subtyping)}$

• Identifying t with [t], we get the inclusion:

Realizers

Truth values

 Moreover, we shall see that application and abstraction can be lifted at the level of truth values. Therefore:

Truth values = Generalized realizers

- Fundamental ideas underlying implicative structures:
 - **1** Operations on λ -terms can be lifted to truth values
 - Truth values can be used as generalized realizers
 - Realizers and truth values live in the same world!

$$Proof = Program = Type = Formula$$

(The ultimate Curry-Howard identification)

- In an implicative structure, the relation $a \leq b$ may read:
 - a is a subtype of b (viewing a and b as truth values)
 - a has type b (viewing a as a realizer, b as a truth value)
 - a is more defined than b (viewing a and b as realizers)
- In particular:

ordering of sybtyping \leq = reverse Scott ordering \supset

Encoding application

Let $\mathscr{A} = (\mathscr{A}, \preceq, \rightarrow)$ be an implicative structure

Definition (Application)

Given
$$a, b \in \mathcal{A}$$
, we let: $ab := \int \{c \in \mathcal{A} : a \leq (b \rightarrow c)\}$

• From the point of view of the Scott ordering:

$$ab := \left| \begin{array}{c} \{c \in \mathscr{A} : (b \to c) \sqsubseteq a\} \end{array} \right|$$

• Properties:

("
$$\beta$$
-reduction")

Encoding abstraction

Let $\mathscr{A} = (\mathscr{A}, \preccurlyeq, \rightarrow)$ be an implicative structure

Definition (Abstraction)

Given
$$f: \mathscr{A} \to \mathscr{A}$$
, we let: $\lambda f:= \bigwedge_{a \in \mathscr{A}} (a \to f(a))$

• From the point of view of the Scott ordering:

$$\lambda f := \bigsqcup_{a \in \mathscr{A}} (a \to f(a))$$

• Properties:

1 If $f \leq g$ (pointwise), then $\lambda f \leq \lambda g$

(Monotonicity)

(β -reduction)

 $(\eta$ -expansion)

Encoding the λ -calculus

Let $\mathscr{A} = (\mathscr{A}, \preccurlyeq, \rightarrow)$ be an implicative structure

• To each closed λ -term t with parameters (i.e. constants) in \mathcal{A} , we associate a truth value $t^{\mathscr{A}} \in \mathscr{A}$:

$$\begin{array}{rcl}
a^{\mathscr{A}} & := & a \\
(\lambda x \cdot t)^{\mathscr{A}} & := & \lambda (a \mapsto (t\{x := a\})^{\mathscr{A}}) \\
(tu)^{\mathscr{A}} & := & t^{\mathscr{A}}u^{\mathscr{A}}
\end{array}$$

• Properties:

- β -rule: If $t \rightarrow_{\beta} t'$, then $(t)^{\mathscr{A}} \preccurlyeq (t')^{\mathscr{A}}$
- η -rule: If $t \rightarrow_{\eta} t'$, then $(t)^{\mathscr{A}} \succcurlyeq (t')^{\mathscr{A}}$

Remarks:

- This is not a denotational model of the λ -calculus!
- The map $t^{\mathcal{A}}$ is not injective in general

Elements of \mathscr{A} can be used as semantic types for λ -terms:

• Types: $a \in \mathcal{A}$

Terms: λ -terms with parameters in \mathscr{A}

Contexts: $\Gamma \equiv x_1 : a_1, \dots, x_n : a_n \quad (a_1, \dots, a_n \in A)$

Judgment: $\Gamma \vdash t : a$

- **Remark:** Each context $\Gamma \equiv x_1 : a_1, \dots, x_n : a_n$ can also be used as a substitution: $\Gamma \equiv x_1 := a_1, \dots, x_n := a_n$
- The validity of a judgment is defined directly (i.e. semantically); not from a set of inference rules:

Definition (Semantic validity)

$$\Gamma \vdash t : a := FV(t) \subseteq dom(\Gamma) \text{ and } (t[\Gamma])^{\mathscr{A}} \preccurlyeq a$$

Definition (Semantic validity)

$$\Gamma \vdash t : a := FV(t) \subseteq dom(\Gamma) \text{ and } (t[\Gamma])^{\mathscr{A}} \preceq a$$

Note: $\Gamma' \leq \Gamma$ means: $\Gamma'(x) \leq \Gamma(x)$ for all $x \in \text{dom}(\Gamma) \subseteq \text{dom}(\Gamma')$.

Proposition

The following semantic typing rules are valid:

$$\frac{\Gamma \vdash x : a}{\Gamma \vdash x : a} \xrightarrow{((x:a) \in \Gamma)} \frac{\Gamma \vdash a : a}{\Gamma \vdash a : a} \frac{\Gamma \vdash t : T}{\Gamma \vdash t : T} \xrightarrow{(FV(t) \subseteq \text{dom}(\Gamma))}$$

$$\frac{\Gamma, x : a \vdash t : b}{\Gamma \vdash \lambda x . t : a \to b} \frac{\Gamma \vdash t : a \to b \quad \Gamma \vdash u : a}{\Gamma \vdash t : a \vdash \tau}$$

$$\frac{\Gamma \vdash t : a_i \quad (\text{for all } i \in I)}{\Gamma \vdash t : A_i} \frac{\Gamma \vdash t : a}{\Gamma \vdash t : a} \xrightarrow{(\Gamma' \preccurlyeq \Gamma)} \frac{\Gamma \vdash t : a}{\Gamma' \vdash t : a} \xrightarrow{(\Gamma' \preccurlyeq \Gamma)}$$

Recall that in (Curry-style) system F, we have:

 $\mathbf{I} := \lambda x \cdot x \qquad : \forall \alpha (\alpha \to \alpha)$

 $\mathbf{K} := \lambda xy \cdot x : \forall \alpha, \beta (\alpha \to \beta \to \alpha)$

S := $\lambda xyz \cdot xz(yz)$: $\forall \alpha, \beta, \gamma ((\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma)$

Proposition

In any implicative structure $\mathscr{A} = (\mathscr{A}, \prec, \rightarrow)$ we have:

$$\mathbf{I}^{\mathscr{A}} := (\lambda x . x)^{\mathscr{A}} = \bigwedge_{a} (a \to a)$$

$$\mathbf{K}^{\mathscr{A}} := (\lambda xy \cdot x)^{\mathscr{A}} = \bigwedge_{a,b} (a \to b \to a)$$

$$\mathbf{S}^{\mathscr{A}} := (\lambda xyz . xz(yz))^{\mathscr{A}} = \bigwedge_{a,b,c} ((a \to b \to c) \to (a \to b) \to a \to c)$$

The same property holds for:

$$\mathbf{C} := \lambda xyz . xzy : \forall \alpha, \beta, \gamma ((\alpha \to \beta \to \gamma) \to \beta \to \alpha \to \gamma)$$

$$\mathbf{W} := \lambda xy . xyy : \forall \alpha, \beta ((\alpha \to \alpha \to \beta) \to \alpha \to \beta)$$

but not for

$$\mathbf{II} := (\lambda x . x)(\lambda x . x) : \forall \alpha (\alpha \to \alpha)$$

(Thanks to a remark of Étienne Miquey)

By analogy, we let:

$$c^{\mathscr{A}} := \bigwedge_{a,b} (((a \to b) \to a) \to a)$$
 (Peirce's law)
$$= \bigwedge_{a} ((\neg a \to a) \to a)$$
 (where $\neg a := (a \to \bot)$)

From this, we extend the encoding of the λ -calculus to all λ -terms enriched with the constant α (= proof-like λ_c -terms)

Complete Heyting algebras are the particular implicative structures $\mathscr{A} = (\mathscr{A}, \preccurlyeq, \rightarrow)$ where \rightarrow is defined from the ordering \preccurlyeq by

$$a \rightarrow b := \max\{c \in \mathscr{A} : (c \curlywedge a) \leq b\}$$

Remark: Complete Heyting (or Boolean) algebras are the structures underlying forcing (in the sense of Kripke or Cohen)

Proposition

When $\mathscr{A} = (\mathscr{A}, \preceq, \rightarrow)$ is a complete Heyting algebra:

- For all $a, b \in \mathcal{A}$: $ab = a \wedge b$ (application = binary meet)
- **2** For all λ -terms t with free variables x_1, \ldots, x_k $(k \ge 0)$ and for all $a_1, \ldots, a_k \in \mathcal{A}$, we have:

$$(t\{x:=a_1,\ldots,x:=a_k\})^{\mathscr{A}}\succcurlyeq a_1 \curlywedge \cdots \curlywedge a_k$$

- **3** In particular, when t is closed: $(t)^{\mathscr{A}} = \top$
- **4** Is a (complete) Boolean algebra iff $\mathbf{c}^{\mathscr{A}} = \top$

Particular case: \mathscr{A} is a complete Heyting algebra

Proof.

- 1 For all $c \in \mathcal{A}$, we have: $ab \preccurlyeq c \Leftrightarrow a \preccurlyeq (b \rightarrow c) \Leftrightarrow a \curlywedge b \preccurlyeq c$. hence $ab = a \wedge b$.
- ② We prove that $(t\{\vec{x}:=\vec{a}\})^{\mathscr{A}} \succcurlyeq a_1 \curlywedge \cdots \curlywedge a_k$ by induction on t
 - $t \equiv x$ (variable). Obvious.
 - $t \equiv t_1 t_2$ (application). Obvious from point 1.
 - $t \equiv \lambda x_0 \cdot t_0$ (abstraction). In this case, we have:

$$(t\{\vec{x}:=\vec{a}\})^{\mathscr{A}} = \bigwedge_{\substack{a_0\\a_0\\a_0\\a_1\\black}} (a_0 \to (t_0\{x_0:=a_0,\vec{x}:=\vec{a}\})^{\mathscr{A}})$$

$$\succcurlyeq \bigwedge_{\substack{a_0\\a_0\\black}} (a_0 \to a_0 \land a_1 \land \cdots \land a_k) \qquad \text{(by IH)}$$

using the relation $b \leq (a \rightarrow a \downarrow b)$ of Heyting Algebras.

- **1** In particular, when t is closed, we get: $(t)^{\mathscr{A}} \geq \top$
- **(** \mathscr{A} , \preccurlyeq **)** Boolean algebra iff $\mathfrak{C}^{\mathscr{A}} = \top$: Obvious.

Logical strength of an implicative structure

• Warning! We may have $(t)^{\mathscr{A}} = \bot$ for some closed λ -term t.

Intuitively, this means that the corresponding term is inconsistent in (the logic represented by) the implicative structure $\mathscr A$

- We say that the implicative structure \(\mathcal{Q} \) is:
 - intuitionistically consistent when $(t)^{\mathscr{A}} \neq \bot$ for all closed λ -terms
 - classically consistent when (t) $^{\mathscr{A}}
 eq \bot$ for all closed λ -terms with α

• Examples:

- Every non-degenerated complete Heyting algebra is int. consistent
- Every non-degenerated complete Boolean algebra is class. consistent
- Every implicative structure induced by a total combinatory algebra is intuitionistically consistent
- Every implicative structure induced by an AKS whose pole ⊥ is coherent (cf [Krivine'12]) is classically consistent

Trivial example 1:

• Given a complete lattice (\mathscr{A}, \preceq) , we let

$$a \rightarrow b := b$$
 (for all $a, b \in \mathscr{A}$)

Clearly, $(\mathscr{A}, \preccurlyeq, \rightarrow)$ is an implicative structure

• In this structure, we have:
$$I^{\mathscr{A}} := \bigwedge_a (a \to a) = \bigwedge_a a = \bot$$
 (!)

Trivial example 2:

• Given a complete lattice $(\mathscr{A}, \preccurlyeq)$, we let

$$a o b := op$$
 (for all $a, b \in \mathscr{A}$)

Again, $(\mathscr{A}, \preccurlyeq, \rightarrow)$ is an implicative structure!

ullet In this structure, we have: $oldsymbol{\mathsf{I}}^\mathscr{A} := \bigwedge (a
ightarrow a) = op, \;\; \mathsf{but}$ $(\mathbf{II})^{\mathscr{A}} := \top \top = \bigwedge \{c \in \mathscr{A} : \top \preccurlyeq (\top \to c)\} = \bigwedge \mathscr{A} = \bot (!)$

... and a non trivial example

(The following example is inspired from Girard's phase semantics for LL)

- Let $(M, \cdot, 1)$ be a commutative monoid. We let:
 - $\bullet \mathscr{A} := \mathfrak{P}(M)$
 - $a \leq b := a \subseteq b$
 - $a \to b := \{ \gamma \in M : (\forall \alpha \in a) \ \gamma \alpha \in b \}$ (for all $a, b \in \mathscr{A}$)

Clearly, $(\mathscr{A}, \preceq, \rightarrow)$ is an implicative structure (since the product · is a total operation)

• We easily check that for all $a, b \in \mathcal{A}$:

$$ab := a \cdot b = \{\alpha\beta : \alpha \in a, \beta \in b\}$$

Therefore:

- ab = ba
- (ab)c = a(bc)
- $aa \neq a$, in general

(application is commutative)

(application is associative)

(application is not idempotent)

Proposition

1 In the implicative structure $(\mathscr{A}, \preceq, \rightarrow) = (\mathfrak{P}(M), \subseteq, \rightarrow)$:

$$\mathbf{I}^{\mathscr{A}} := (\lambda x \cdot x)^{\mathscr{A}} = \{1\} \neq \bot$$

$$\mathbf{C}^{\mathscr{A}} := (\lambda xyz \cdot xzy)^{\mathscr{A}} = \{1\} \neq \bot$$

$$\mathbf{B}^{\mathscr{A}} := (\lambda xyz \cdot x(yz))^{\mathscr{A}} = \{1\} \neq \bot$$

② Moreover, if we assume that $\alpha^2 \neq \alpha$ for some $\alpha \in M$, then:

$$\mathbf{K}^{\varnothing} := (\lambda xy \cdot x)^{\varnothing} = \varnothing = \bot$$

 $\mathbf{W}^{\varnothing} := (\lambda xy \cdot xyy)^{\varnothing} = \varnothing = \bot$
 $\mathbf{S}^{\varnothing} := (\lambda xyz \cdot xz(yz))^{\varnothing} = \varnothing = \bot$

More generally, for each closed λ -term t, we (should) have:

$$(t)^{\mathscr{A}} = \begin{cases} \{1\} & \text{if } t \text{ is linear} \\ \varnothing & \text{otherwise} \end{cases}$$
 (to be checked)

Plan

- Introduction
- 2 Implicative structures
- Separation
- The implicative tripos
- Conclusion

Separators

Let $\mathscr{A} = (\mathscr{A}, \preceq, \rightarrow)$ be an implicative structure

Definition (Separator)

A separator of \mathscr{A} is a subset $S \subseteq \mathscr{A}$ such that:

- (1) If $a \in S$ and $a \leq b$, then $b \in S$ (upwards closed)
- (2) $\mathbf{K}^{\mathscr{A}} = (\lambda xy \cdot x)^{\mathscr{A}} \in S$ and $\mathbf{S}^{\mathscr{A}} = (\lambda xyz \cdot xz(yz))^{\mathscr{A}} \in S$
- (3) If $(a \rightarrow b) \in S$ and $a \in S$, then $b \in S$ (modus ponens)

We say that S is consistent (resp. classical) when $\bot \notin S$ (resp. $\varpi^{\mathscr{A}} \in S$)

Remarks:

- Under (1), axiom (3) is equivalent to:
 - (3') If $a, b \in S$, then $ab \in S$ (closure under application)
- In a complete Heyting algebra: separator = filter
- But in general, separators are not closed under binary meets

λ -terms and separators

Intuition: Separator $S \subseteq \mathscr{A} =$ criterion of truth (in \mathscr{A})

• All separators are closed under the operations of the λ -calculus:

Proposition

Given a separator $S \subseteq \mathscr{A}$:

- **①** For all λ -terms t with free variables x_1,\ldots,x_k and for all $a_1,\ldots,a_k\in S$, we have: $(t\{x_1:=a_1,\ldots,x_k:=a_k\})^\mathscr{A}\in S$
- ② For all closed λ -terms t: $(t)^{\mathscr{A}} \in S$
- Alternative formulation:

Given a closed λ -term t with parameters in S:

$$\vdash t : a \text{ implies } a \in S$$

If a has a "proof" t (possibly using "axioms" $\in S$), then a is true ($\in S$)

Definition (intuitionistic & classical cores)

Given an implicative algebra we write:

- $S_{I}^{0}(\mathscr{A})$ the smallest separator of \mathscr{A}
- $S_{\kappa}^{0}(\mathscr{A})$ the smallest classical separator of \mathscr{A}

(intuitionistic core)

(classical core)

We easily check that:

$$S^0_{\mathcal{J}}(\mathscr{A}) = \uparrow \{(t)^{\mathscr{A}} : t \text{ closed } \lambda \text{-term}\}$$

 $S^0_{\kappa}(\mathscr{A}) = \uparrow \{(t)^{\mathscr{A}} : t \text{ closed } \lambda \text{-term with } \alpha\}$

writing $\uparrow B$ the upwards closure of a subset $B \subseteq \mathscr{A}$

Proposition

An implicative algebra \mathscr{A} is intuitionistically (resp. classically) consistent if and only if $\perp \notin S_{\iota}^{0}(\mathscr{A})$ (resp. $\perp \notin S_{\kappa}^{0}(\mathscr{A})$)

Encoding conjunction and disjunction

In any implicative structure, conjunction and disjunction are defined by:

$$a \times b := \bigwedge_{c} ((a \to b \to c) \to c)$$
 (conjunction)
 $a + b := \bigwedge_{c} ((a \to c) \to (b \to c) \to c)$ (disjunction)

Proposition

The following semantic typing rules are valid:

$$\frac{\Gamma \vdash t : a \quad \Gamma \vdash u : b}{\Gamma \vdash \lambda z . z t u : a \times b} \qquad \frac{\Gamma \vdash t : a \times b}{\Gamma \vdash t (\lambda x y . x) : a} \qquad \frac{\Gamma \vdash t : a \times b}{\Gamma \vdash t (\lambda x y . y) : b}$$

$$\frac{\Gamma \vdash t : a}{\Gamma \vdash \lambda z w . z t : a + b} \qquad \frac{\Gamma \vdash t : b}{\Gamma \vdash \lambda z w . w t : a + b}$$

$$\frac{\Gamma \vdash t : a + b \quad \Gamma, x : a \vdash u : c \quad \Gamma, y : b \vdash v : c}{\Gamma \vdash t (\lambda x . u) (\lambda y . v) : c}$$

Moreover, we have: $(\lambda z \cdot z \cdot a \cdot b)^{\mathscr{A}} = \langle a, b \rangle^{\mathscr{A}} = a \times b$ (pairing = conjunction)

Encoding quantifiers

Given a family $(a_i)_{i \in I}$, we let:

$$\bigvee_{i \in I} a_i := \bigwedge_{i \in I} a_i
\prod_{i \in I} a_i := \bigwedge_{c \in \mathscr{A}} \left(\bigwedge_{i \in I} (a_i \to c) \to c \right)$$

Proposition

The following semantic typing rules are valid:

$$\frac{\Gamma \vdash t : a_{i} \pmod{i \in I}}{\Gamma \vdash t : \forall_{i \in I} a_{i}} \qquad \frac{\Gamma \vdash t : \forall_{i \in I} a_{i}}{\Gamma \vdash t : a_{i_{0}}} \pmod{i_{0} \in I}$$

$$\frac{\Gamma \vdash t : a_{i_{0}}}{\Gamma \vdash \lambda z . z t : \exists_{i \in I} a_{i}} \pmod{i_{0} \in I} \qquad \frac{\Gamma \vdash t : \exists_{i \in I} a_{i} \qquad \Gamma, x : a_{i} \vdash u : c \pmod{i \in I}}{\Gamma \vdash t (\lambda x . u) : c}$$

The simpler encoding $\exists_{i \in I} a_i := \bigvee_{i \in I} a_i$ does not work in classical realizability

Interpreting 1st-order logic

Definition (Interpretation of a 1st-order language in \mathscr{A})

An interpretation of a 1st-order language \mathscr{L} in \mathscr{A} is given by

- an interpretation $\llbracket \cdot \rrbracket$ of 1st-order terms in some set $M \neq \emptyset$
- a function $[p]: M^k \to \mathscr{A}$ for each k-ary predicate symbol p

Each formula ϕ of \mathscr{L} (with a valuation ρ) is interpreted in \mathscr{A} by:

$$\begin{aligned}
\llbracket p(t_1, \dots, t_n) \rrbracket_{\rho} &= \llbracket p \rrbracket (\llbracket t_1 \rrbracket_{\rho}, \dots, \llbracket t_k \rrbracket_{\rho}) \\
\llbracket \phi \Rightarrow \psi \rrbracket_{\rho} &= \llbracket \phi \rrbracket_{\rho} \to \llbracket \psi \rrbracket_{\rho} & \llbracket \neg \phi \rrbracket_{\rho} &= \llbracket \phi \rrbracket_{\rho} \to \bot \\
\llbracket \phi \land \psi \rrbracket_{\rho} &= \llbracket \phi \rrbracket_{\rho} \times \llbracket \psi \rrbracket_{\rho} & \llbracket \phi \lor \psi \rrbracket_{\rho} &= \llbracket \phi \rrbracket_{\rho} + \llbracket \psi \rrbracket_{\rho} \\
\llbracket \forall x \phi \rrbracket_{\rho} &= \forall_{v \in M} \llbracket \phi \rrbracket_{\rho, x \leftarrow v} & \llbracket \exists x \phi \rrbracket_{\rho} &= \exists_{v \in M} \llbracket \phi \rrbracket_{\rho, x \leftarrow v}
\end{aligned}$$

Theorem (Soundness)

If ϕ is an intuitionistic (resp. classical) tautology, then:

$$\llbracket \phi \rrbracket_{\varrho} \in S^0_{L}(\mathscr{A})$$
 (resp. $\llbracket \phi \rrbracket_{\varrho} \in S^0_{\kappa}(\mathscr{A})$)

The above construction easily extends to 2nd-/higher-order logic Remark:

Implicative algebras

• Given an interpretation $\llbracket \cdot \rrbracket$ of a 1st-order language \mathcal{L} in \mathcal{A} , each separator $S \subseteq \mathcal{A}$ induces a theory \mathcal{T}_S defined by:

$$\mathscr{T}_{\mathcal{S}} := \{ \phi \text{ closed } : \llbracket \phi \rrbracket \in \mathcal{S} \}$$

- ullet The larger the separator S, the larger the theory \mathscr{T}_S
- ullet The theory $\mathscr{T}_{\mathcal{S}}$ is consistent iff $\perp_{\mathscr{A}}
 otin \mathcal{S}$

Definition (Implicative algebra)

An implicative algebra is a quadruple $(\mathscr{A}, \preccurlyeq, \rightarrow, S)$ where

- $(\mathscr{A}, \preccurlyeq, \rightarrow)$ is an implicative structure
- $S \subseteq \mathscr{A}$ is a separator

The implicative algebra $(\mathscr{A}, \preccurlyeq, \rightarrow, S)$ is

- consistent when $\bot \notin S$
- classical when $\alpha^{\mathscr{A}} \in S$

Entailment

Let $\mathscr{A} = (\mathscr{A}, \preceq, \rightarrow, S)$ be an implicative algebra

• The separator $S \subseteq \mathscr{A}$ induces a relation of entailment

$$a \vdash_S b \equiv (a \to b) \in S$$
 (for all $a, b \in \mathscr{A}$)

• The relation $a \vdash_S b$ is clearly a preorder on \mathscr{A} , whose corresponding equivalence relation $\dashv \vdash_{S}$ is given by:

$$a \dashv \vdash_S b \equiv (a \rightarrow b) \in S \text{ and } (b \rightarrow a) \in S$$

 $\Leftrightarrow (a \rightarrow b) \times (b \rightarrow a) \in S$

• In the quotient $\mathscr{A}/S := \mathscr{A}/\dashv \vdash_S$, the preorder \vdash_S induces an order \leq_S defined by

$$[a] \leq_S [b] \equiv a \vdash_S b$$

(Writing [a] the equivalence class of a modulo S)

Proposition

Let $\mathscr{A} = (\mathscr{A}, \preceq, \rightarrow, S)$ be an implicative algebra

1 The quotient poset $H = (\mathcal{A}/S, \leq_S)$ is a Heyting algebra, where:

② When \mathscr{A} is classical (i.e. $\alpha^{\mathscr{A}} \in S$), this poset is a Boolean algebra

The poset $H = (\mathcal{A}/S, \leq_S)$ is called the Heyting algebra induced by \mathcal{A}

Remarks:

- The Heyting algebra H is in general not complete
- **Beware!** The ordering \leq_S on H comes from \vdash_S (entailment), and not from \leq (subtyping). However, we have: $a \leq b \Rightarrow [a] \leq_S [b]$.

Although separators are *not* filters (w.r.t. the order \leq), they can be manipulated similarly to filters. For instance:

- We call a maximal separator any separator $S \subseteq \mathcal{A}$ that is consistent and maximal (w.r.t. inclusion) among consistent separators
- By Zorn's lemma, we easily check that any consistent separator can be extended into a maximal separator

Trivial Boolean algebra

 $S \subseteq \mathscr{A}$ is a maximal separator if and only if the induced Heyting algebra $(\mathcal{A}/S, \leq_S)$ is the trivial Boolean algebra:

$$S \subseteq \mathscr{A}$$
 maximal iff $(\mathscr{A}/S, \leq_S) \approx 2$

Works even when the maximal separator $S \subseteq \mathscr{A}$ is not classical!

Maximal separators

There are non-classical maximal separators!

Typical example is given by intuitionistic realizability:

• Let $(\mathscr{A}, \preceq, \rightarrow)$ be the implicative structure induced by a total combinatory algebra (P, \cdot, k, s) :

•
$$\mathscr{A}:=\mathfrak{P}(P)$$
 (sets of combinators)
• $a \preccurlyeq b:=a\subseteq b$ (inclusion)
• $a\to b:=\{z\in P: \forall x\in a,\ z\cdot x\in b\}$ (Kleene's implication)

- Let $S = \mathfrak{P}(P) \setminus \{\emptyset\} = \mathscr{A} \setminus \{\bot\}$. We easily check that S is a consistent separator, obviously maximal. Hence: $\mathscr{A}/S \approx 2$.
- Identity $\mathscr{A}/S \approx 2$ reflects the fact that in intuitionistic realizability, we have either $\vdash \phi$ or $\vdash \neg \phi$ for each closed formula ϕ .
- ullet On the other hand, we have: ${f c}^{\mathscr A}=iggl((
 eg a o a) o a)=arnothing$ (Indeed, from a realizer $t \in \mathbf{c}^{\mathcal{A}}$, we would easily solve the halting problem)

Separators and filters

 In the theory of implicative algebras, separators play the same role as filters in the theory of Heyting algebras.

However, separators $S \subseteq \mathcal{A}$ are in general *not* filters:

$$a, b \in S \Rightarrow ab \in S$$

 $a, b \in S \Rightarrow a \times b \in S$
 $a, b \in S \not\Rightarrow a \wedge b \in S$

- On the other hand, in the particular case where \mathscr{A} is (derived from) a complete Heyting algebra, we have: separator = filter
- We shall now study in the general case the situations where a separator happens to be also a filter

• Given an implicative structure $\mathscr{A} = (\mathscr{A}, \preceq, \rightarrow)$, we let:

$$\pitchfork^{\mathscr{A}} := \bigwedge_{a,b} (a \to b \to a \curlywedge b) \qquad (\text{non deterministic choice})$$

We shall also use the symbol \pitchfork (non-deterministic choice operator) as an extra constant of the λ -calculus (like α), that is interpreted by $\mathbb{A}^{\mathscr{A}}$

• In the λ_c -calculus, universal realizers of the "type" $\pitchfork^{\mathscr{A}}$ are the instructions \uparrow with the non-deterministic evaluation rule:

Non deterministic choice and parallel 'or'

$$\bullet \ \mathsf{Let} \quad \mathsf{Nat}^\mathscr{A}(n) \ := \ \bigwedge_{a \in \mathscr{A}^{\mathbb{N}}} \!\! \left(\mathsf{a}(0) \to \!\!\! \bigwedge_{p \in \mathsf{IN}} \!\!\! \left(\mathsf{a}(p) \to \mathsf{a}(p+1) \right) \to \mathsf{a}(n) \right)$$

Fact

Non deterministic choice is related to the parallel 'or'

$$\mathsf{p\text{-}or}^\mathscr{A} \; := \; \left(\bot \to \top \to \bot\right) \curlywedge \left(\top \to \bot \to \bot\right) \qquad \qquad \mathsf{(parallel 'or')}$$

Fact

$$\begin{array}{ccc}
\bullet & \pitchfork^{\mathscr{A}} & \preccurlyeq & \mathsf{p-or}^{\mathscr{A}} \\
\bullet & & \dashv \vdash_{S} & \mathsf{p-or}^{\mathscr{A}}
\end{array}$$

(in any classical separator $S \subseteq \mathscr{A}$)

Non deterministic choice, parallel 'or' and filters

- Let $\mathscr{A} = (\mathscr{A}, \preceq, \rightarrow)$ be an implicative structure
- It is clear that a separator $S \subseteq \mathcal{A}$ is a filter if and only if it is closed under binary meets: $a, b \in S \Rightarrow a \land b \in S$ (for all $a, b \in \mathscr{A}$)

Proposition (Characterizing filters)

- **1** A separator $S \subseteq \mathscr{A}$ is a filter if and only if: $\pitchfork^{\mathscr{A}} \in S$
- ② A classical separator $S \subseteq \mathscr{A}$ is a filter if and only if: p-or $\mathscr{A} \in S$

Proof.

- **1** (\Rightarrow) In any separator $S \subseteq \mathcal{A}$, we have $(\lambda xy \cdot x)^{\mathcal{A}}, (\lambda xy \cdot y)^{\mathcal{A}} \in S$. So that when S is a filter, we get $\pitchfork^{\mathscr{A}} = (\lambda xy \cdot x)^{\mathscr{A}} \perp (\lambda xy \cdot y)^{\mathscr{A}} \in S$.
 - (\Leftarrow) If $\pitchfork^{\mathscr{A}} \in S$, then $(a \to b \to a \land b) \in S$ for all $a, b \in \mathscr{A}$. So that if $a, b \in S$, we get $a \perp b$ (applying the modus ponens twice in S).
- ② Obvious from item 1, since: $\pitchfork^{\mathscr{A}} \in S$ iff p-or $^{\mathscr{A}} \in S$.

Generating separators

- Given any subset $X \subseteq \mathcal{A}$, we write:
 - App(X) the applicative algebra generated by X, i.e. the smallest subset of \mathcal{A} containing X and closed under application
 - $\uparrow X$ the upwards closure of X in \mathscr{A} (w.r.t. \preccurlyeq)

Lemma (Separator generated by a subset of \mathscr{A})

For all $X \subseteq \mathcal{A}$, the subset $\uparrow App(X \cup \{\mathbf{K}^{\mathcal{A}}, \mathbf{S}^{\mathcal{A}}\}) \subseteq \mathcal{A}$ smallest separator of \mathcal{A} containing X as a subset

- A separator $S \subseteq \mathscr{A}$ is finitely generated when it is of the form $S = \uparrow App(X)$ for some finite subset $X \subseteq \mathscr{A}$
- We observe that both separators $S_I^0(\mathscr{A}) \subseteq \mathscr{A}$ (intuitionistic core) and $S_{\kappa}^{0}(\mathscr{A}) \subseteq \mathscr{A}$ (classical core) are finitely generated

Theorem

Given a separator $S \subseteq \mathcal{A}$, the following are equivalent:

- S is finitely generated and $\pitchfork^{\mathscr{A}} \in S$
- **2** S is a principal filter: $S = \uparrow \{\Theta\}$ for some $\Theta \in S$ $(\Theta \text{ is called the universal proof of } S)$
- **1** The induced Heyting algebra $H := (\mathcal{A}/S, \leq_S)$ is complete, and the surjection $[\cdot]: \mathcal{A} \to H$ commutes with infinitary meets:

$$\left[\bigwedge_{i\in I}a_i\right] = \bigwedge_{i\in I}[a_i]$$

In model theoretic terms, this situation corresponds to a collapse of (intuitionistic/classical) realizability into (Kripke/Cohen) forcing!

Proof.

• S finitely generated $+ \pitchfork^{\mathscr{A}} \in \mathscr{S} \Rightarrow S$ principal filter

Suppose that $S = \uparrow \mathsf{App}(\{g_1, g_2, \dots, g_n\})$ is a filter. Since S is a filter, we have $\pitchfork^\mathscr{A} := \bigwedge_{a \in S} (a \to b \to a \curlywedge b) \in S$, and more generally:

for all $k \ge 1$. We let: $\Theta := (\mathbf{Y}(\lambda r. \cap_{n+1}^{\mathscr{A}} g_1 \cdots g_n(rr)))^{\mathscr{A}} \in S$ where $\mathbf{Y} \equiv (\lambda yf. f(yyf))(\lambda yf. f(yyf))$ is Turing's fixpoint combinator.

By construction we have $\Theta \preccurlyeq \pitchfork_{n+1}^{\mathscr{A}} g_1 \cdots g_n(\Theta \Theta)$, hence:

$$\Theta \preccurlyeq g_1, \ldots, \Theta \preccurlyeq g_n \text{ and } \Theta \preccurlyeq \Theta \Theta$$

By induction, we get $\Theta \leq a$ for all $a \in \mathsf{App}(g_1, \ldots, g_n)$, and thus $\Theta \leq a$ for all $a \in S$. Therefore: $\Theta = \min(S)$ and $S = \uparrow \{\Theta\}$. (...

• S principal filter \Rightarrow H complete + commutation property

Suppose that $S = \uparrow \{\Theta\}$, and let $[a_i]_{i \in I} \in H^I$ be a family of elements of H, defined from a family of representatives $(a_i)_{i \in I} \in \mathscr{A}^I$. Since $(\bigwedge_{i \in I} a_i) \leq a_i$ for all $i \in I$, $\left[\bigwedge_{i \in I} a_i \right]$ is a lower bound of the family $[a_i]_{i \in I}$ in H.

Conversely, if [b] is a lower bound of the family $[a_i]_{i \in I}$ in H, we have $(b \to a_i) \in S$ for all $i \in I$. And since $S = \uparrow \{\Theta\}$, we get $\Theta \preccurlyeq (b \to a_i)$ for all $i \in I$, so that:

$$\Theta \ \preccurlyeq \ \bigwedge_{i \in I} (b \to a_i) = b \to \bigwedge_{i \in I} a_i.$$

Hence $[b] \leq_S [\bigwedge_{i \in I} a_i]$. Therefore, $[\bigwedge_{i \in I} a_i]$ is the g.l.b. of the family $[a_i]_{i \in I}$, hence the commutation property $[\lambda_{i \in I} a_i] = \bigwedge_{i \in I} [a_i]$.

• H complete + commut. property \Rightarrow S finitely generated $+ \pitchfork^{\mathscr{A}} \in S$ Suppose that $H = \mathscr{A}/S$ is complete and that the surjection $[\cdot]: \mathscr{A} \to H$ commutes with infinitary meets. Let $\Theta = \bigwedge S$. From the commutation property, we have:

$$[\Theta] = \left[\bigwedge_{a \in S} a \right] = \bigwedge_{a \in S} [a] = \bigwedge_{a \in S} \top_H = \top_H,$$

hence $\Theta \in S$, so that $\Theta = \min(S)$ and $S = \uparrow \{\Theta\}$. Therefore the separator S is a (principal) filter, hence we have $\pitchfork^{\mathscr{A}} \in S$.

S is also finitely generated, by the unique generator Θ .

Uniform existential quantification

• We say that an implicative structure $\mathscr{A} = (\mathscr{A}, \preccurlyeq, \rightarrow)$ has uniform existential quantification when for all $(a_i)_{i\in I} \in \mathscr{A}^I$ and $b \in \mathscr{A}$:

$$(*) \qquad \qquad \bigwedge_{i \in I} (a_i \to b) = \left(\bigvee_{i \in I} a_i \right) \to b$$

- This equality (that corresponds to ∃-elim) holds in:
 - all complete Heyting/Boolean algebras
 - all the implicative algebras induced by total combinatory algebras (P, \cdot, k, s) (intuitionistic realizability)
- When (*) holds, we can let: $\prod_{i \in I} a_i := \bigvee_{i \in I} a_i$

Proposition

If \mathscr{A} has uniform existential quantifications, then:

- 2 All classical separators $S \subseteq \mathcal{A}$ are filters

Morality: Uniform \exists/\forall (both) are incompatible with classical realizability

Plan

- Introduction
- 2 Implicative structures
- Separation
- 4 The implicative tripos
- Conclusion

- We now want to prove that each implicative algebra $(\mathscr{A}, \preceq, \rightarrow, S)$ induces a tripos $P : \mathbf{Set}^{op} \to \mathbf{HA}$
 - Recall that HA is the category of Heyting algebras
 - Intuitively: tripos = categorical model of higher-order logic
- We already know how to construct similar triposes from:
 - Complete Heyting/Boolean algebras (forcing triposes)
 - Partial combinatory algebras (realizability triposes)
 - Abstract Krivine structures (AKS) [Streicher'12]

Our aim is thus to subsume all the above constructions

 Triposes are based on the notion of first-order hyperdoctrine, which is the categorical formulation of first-order theories (or models)

• A Galois connection between two posets A and B is a pair of functions $F: A \rightarrow B$ and $G: B \rightarrow A$ such that:

$$F(x) \le y \quad \Leftrightarrow \quad x \le G(y)$$
 (for all $x \in A$, $y \in B$)

- In this situation (notation: $F \dashv G$), we observe that:
 - **1** $F: A \rightarrow B$ and $G: B \rightarrow A$ are necessarily monotonic
 - ② $F: A \rightarrow B$ is uniquely determined by $G: B \rightarrow A$:

$$F(x) = \min\{y \in B : x \le G(y)\}$$
 (for all $x \in A$)

F is called the left adjoint of G, and written $F = G_L$

3 $G: B \to A$ is uniquely determined by $F: A \to B$:

$$G(y) = \max\{x \in A : F(x) \le y\}$$
 (for all $y \in B$)

G is called the right adjoint of F, and written $G = F_R$

Morphisms of Heyting algebras

Given two Heyting algebras H, H', a function $F: H \to H'$ is a morphism of Heyting algebras when for all $x, y \in H$:

$$F(x \wedge y) = F(x) \wedge F(y)$$
 $F(\top) = \top$
 $F(x \vee y) = F(x) \vee F(y)$ $F(\bot) = \bot$
 $F(x \rightarrow y) = F(x) \rightarrow F(y)$

A morphism of Heyting algebras is thus a morphism of bounded lattices that also preserves Heyting's implication

- In what follows, we shall mainly consider morphisms of Heyting algebras $F: H \to H'$ with left & right adjoints $F_L, F_R: H' \to H$
 - When they exist, both adjoints are monotonic and unique, but they are in general not morphisms of Heyting algebras
 - Note that each isomorphism $F: H \to H'$ has left and right adjoints:

$$F_L = F_R = F^{-1}$$

Preliminaries: Cartesian categories

Recall that a Cartesian category is a category C with a terminal object $1 \in \mathbf{C}$ and binary products $X \times Y \in \mathbf{C}$ for all objects $X \times Y$. (So that C has all finite products)

• Given $X, Y \in \mathbf{C}$, we write:

•
$$\pi_{X,Y} \in \mathbf{C}(X \times Y, X)$$
 (1st projection)

•
$$\pi'_{X,Y} \in \mathbf{C}(X \times Y, Y)$$

• $\tau_{X,Y} := \langle \pi'_{X,Y}, \pi_{X,Y} \rangle \in \mathbf{C}(X \times Y, Y \times X)$

(2nd projection)

•
$$\delta_X := \langle id_X, id_X \rangle \in \mathbf{C}(X, X \times X)$$

(arrow of duplication)

Let **C** be a Cartesian category

Definition (First-order hyperdoctrine)

A first-order hyperdoctrine over C is a functor $P: C^{op} \to HA$ such that:

- (1) For all $Z, X \in \mathbf{C}$, the map $P(\pi_{Z,X}) : P(Z) \to P(Z \times X)$ has left and right adjoints $(\exists X)_{|Z}, (\forall X)_{|Z} : P(Z \times X) \rightarrow P(Z)$
- The following diagrams (Beck-Chevalley conditions)

$$P(Z \times X) \xrightarrow{(\exists X)_{|Z}} P(Z) \qquad P(Z \times X) \xrightarrow{(\forall X)_{|Z}} P(Z)$$

$$P(f \times id_X) \uparrow \qquad \uparrow_{P(f)} \qquad P(f \times id_X) \uparrow \qquad \uparrow_{P(f)} \qquad P(f)$$

$$P(Z' \times X) \xrightarrow{(\exists X)_{|Z'}} P(Z') \qquad P(Z' \times X) \xrightarrow{(\forall X)_{|Z'}} P(Z')$$

commute for all $X, Z, Z' \in \mathbf{C}$ and $f \in \mathbf{C}(Z, Z')$

(3) Each $X \in \mathbf{C}$ has an equality predicate $(=_X) \in P(X \times X)$, such that:

$$(=_X) \le q \Leftrightarrow \top \le P(\delta_X)(q)$$
 $(q \in P(X \times X))$

First-order hyperdoctrines: some intuitions

Intuitively, a first-order hyperdoctrine $P: \mathbf{C}^{op} \to \mathbf{HA}$ is an abstract description of a particular intuitionistic or classical theory. Note that such a description also applies to models, that can be viewed as theories.

In this framework:

- The Cartesian category C represents the domain of the discourse
 - The objects of C represent types, or contexts
 - The arrows of C represent functions, or substitutions
 - The Cartesian product $X \times Y$ (in **C**) represents the product of two types, or the concatenation of two contexts
 - The terminal object 1 (∈ C) represents the singleton type, or the empty context
- The (contravariant) functor $P : \mathbf{C}^{op} \to \mathbf{HA}$ associates to each object $X \in \mathbf{C}$ the Heyting algebra P(X) of predicates over X

First-order hyperdoctrines: some intuitions

- ullet The (contravariant) functor $P: \mathbf{C}^{\mathsf{op}} o \mathbf{HA}$ associates to each object $X \in \mathbf{C}$ the Heyting algebra P(X) of predicates over X
 - Each predicate $p \in P(X)$ can be viewed as an abstract formula p(x) depending on a variable x: X. Intuitively:

$$p \le q$$
 means: $(\forall x : X) (p(x) \Rightarrow q(x))$
 $p = q$ means: $(\forall x : X) (p(x) \Leftrightarrow q(x))$

(So that in this description, the ordering \leq represents inclusion whereas equality represent extensional equality of predicates)

• P(X) is a Heyting algebra, which means that predicates $p, q \in P(X)$ can be assembled using the constructions

$$\perp$$
, \top , $p \wedge q$, $p \vee q$, $p \rightarrow q$

The axioms of Heyting algebras express that all the deduction rules of intuitionistic propositional calculus are valid

- The correspondence $X \mapsto P(X)$ is functorial, since each arrow $f \in \mathbf{C}(X, Y)$ induces a substitution map $P(f) : P(Y) \to P(X)$:
 - Given $p \in P(Y)$, the predicate $P(f)(p) \in P(X)$ represents the pre-image of p by f: $P(f)(p) \equiv p \circ f''$
 - Or, if we see p as a formula p(y)(in the context y : Y) then P(f)(p) is the formula $p(y)\{y := f(x)\}$ (in the context x : X)
- The fact that $P(f): P(Y) \to P(X)$ is a morphism of HAs expresses that substitution commutes with all connectives:

$$(p(y) \land q(y))\{y := f(x)\} \equiv p(f(x)) \land q(f(x))$$

$$(p(y) \lor q(y))\{y := f(x)\} \equiv p(f(x)) \lor q(f(x))$$

$$(p(y) \to q(y))\{y := f(x)\} \equiv p(f(x)) \to q(f(x))$$

• Identities $P(id_X) = id_{P(X)}$ and $P(g \circ f) = P(f) \circ P(g)$ express that the operation of substitution (or pre-image) is contravariant

- $P(\pi_{Z,X}): P(Z) \rightarrow P(Z \times X)$ • Axiom (1) says that the map associated to the 1st projection $\pi_{ZX} \in \mathbf{C}(Z \times X, Z)$ $(\exists X)_{|Z}, (\forall X)_{|Z} : P(Z \times X) \rightarrow P(Z)$ has both adjoints
 - Recall that these adjoints are unique and monotonic; but in general, they are not morphisms of Heyting algebras.
 - Given $p \in P(Z \times X)$:

• Given $p \in P(Z \times X)$ and $q \in P(Z)$, the adjunctions

$$\begin{array}{ccc} (\exists X)_{\mid Z}(p) \leq q & \Leftrightarrow & p \leq \mathsf{P}(\pi_{Z,X})(q) \\ q \leq (\forall X)_{\mid Z}(p) & \Leftrightarrow & \mathsf{P}(\pi_{Z,X})(q) \leq p \end{array}$$

represent the logical equivalences:

$$(\forall z : Z)[(\exists x : X) \ p(z, x) \Rightarrow q(z)] \Leftrightarrow (\forall z : Z, \ x : X)[p(z, x) \Rightarrow q(z)]$$

$$(\forall z : Z)[q(z) \Rightarrow (\forall x : X) \ p(z, x)] \Leftrightarrow (\forall z : Z, \ x : X)[q(z) \Rightarrow p(z, x)]$$

• The Beck-Chevalley conditions (2)

$$P(Z \times X) \xrightarrow{(\exists X)_{\mid Z}} P(Z) \qquad P(Z \times X) \xrightarrow{(\forall X)_{\mid Z}} P(Z)$$

$$P(f \times id_X) \uparrow \qquad \uparrow P(f) \qquad P(f \times id_X) \uparrow \qquad \uparrow P(f)$$

$$P(Z' \times X) \xrightarrow{(\exists X)_{\mid Z'}} P(Z') \qquad P(Z' \times X) \xrightarrow{(\forall X)_{\mid Z'}} P(Z')$$

express the behavior of substitution w.r.t. quantifiers:

$$((\exists x : X) \, p(z', x)) \{z' := f(z)\} \quad \equiv \quad (\exists x : X) (p(z', x) \{z' := f(z), x := x\})$$

$$((\forall x : X) \, p(z', x)) \{z' := f(z)\} \quad \equiv \quad (\forall x : X) (p(z', x) \{z' := f(z), x := x\})$$

• Axiom (3) expresses that the map $P(\delta_X): P(X \times X) \to P(X)$ has a left adjoint $(=_X) \in P(X \times X)$ at the point $\top \in P(X)$:

$$(=_X) \leq q \Leftrightarrow \top \leq P(\delta_X)(q) \qquad (q \in P(X \times X))$$

The above adjunction corresponds to the logical equivalence:

$$(\forall x, y : X)[x = y \Rightarrow q(x, y)] \quad \Leftrightarrow \quad (\forall x : X)[\top \Rightarrow q(x, x)]$$

First-order hyperdoctrines: definition (recall)

Let **C** be a Cartesian category

Definition (First-order hyperdoctrine)

A first-order hyperdoctrine over C is a functor $P: C^{op} \to HA$ such that:

- (1) For all $Z, X \in \mathbf{C}$, the map $P(\pi_{Z,X}) : P(Z) \to P(Z \times X)$ has left and right adjoints $(\exists X)_{|Z}, (\forall X)_{|Z} : P(Z \times X) \rightarrow P(Z)$
- The following diagrams (Beck-Chevalley conditions)

$$P(Z \times X) \xrightarrow{(\exists X)_{|Z}} P(Z) \qquad P(Z \times X) \xrightarrow{(\forall X)_{|Z}} P(Z)$$

$$P(f \times id_X) \uparrow \qquad \uparrow_{P(f)} \qquad P(f \times id_X) \uparrow \qquad \uparrow_{P(f)} \qquad P(f)$$

$$P(Z' \times X) \xrightarrow{(\exists X)_{|Z'}} P(Z') \qquad P(Z' \times X) \xrightarrow{(\forall X)_{|Z'}} P(Z')$$

commute for all $X, Z, Z' \in \mathbf{C}$ and $f \in \mathbf{C}(Z, Z')$

(3) Each $X \in \mathbf{C}$ has an equality predicate $(=x) \in P(X \times X)$, such that:

$$(=_X) \le q \Leftrightarrow \top \le P(\delta_X)(q)$$
 $(q \in P(X \times X))$

Let $P: \mathbf{C}^{op} \to \mathbf{HA}$ be a first-order hyperdoctrine

- Using equality predicates $(=_X) \in P(X \times X)$, one can show more generally that all substitution maps $P(f) : P(Y) \to P(X)$ have left and right adjoints $\exists (f), \forall (f) : P(X) \to P(Y)$
- Intuitively, given a predicate $p \in P(X)$, the two predicates $\exists (f)(p), \forall (f)(p) \in P(Y)$ are defined by:

$$(\exists (f)(p))(y) \equiv (\exists x : X) (y = f(x) \land p(x))$$
$$(\forall (f)(p))(y) \equiv (\forall x : X) (y = f(x) \Rightarrow p(x))$$

• In the definition of hyperdoctrines, some authors require that the Beck-Chevalley condition holds for all pullback squares in **C**:

(full Beck-Chevalley condition)

- Beware! The full Beck-Chevalley is strictly stronger than the Beck-Chevalley condition restricted to the projections (there are counter-examples with some syntactic hyperdoctrines)
- However, this stronger condition holds in most models, and in particular in all forcing/realizability/implicative triposes

Let **C** be a Cartesian closed category

Definition (Tripos)

A tripos over C is a first-order hyperdoctrine $P: C^{op} \to HA$ given with an object $Prop \in \mathbf{C}$ and a generic predicate $tr \in P(Prop)$, such that:

For all $X \in \mathbf{C}$, each predicate $p \in P(X)$ is represented by an arrow $f_p \in \mathbf{C}(X, \mathsf{Prop})$ (not necessarily unique) such that:

$$P(\operatorname{tr})(f_p) = p$$

Intuitively:

- The Cartesian closed category **C** is a model of the simply-typed λ -calculus
- Object Prop \in **C** is the type of propositions
- Generic predicate $tr \in P(Prop)$ is the truth predicate
- For each predicate $p \in P(X)$, the corresponding arrow $f_p \in \mathbf{C}(X, \text{Prop})$ is a propositional function representing p: $tr(f_p(x)) \equiv p(x)$
- In what follows, we shall only consider triposes over the c.c.c. Set

Proposition and definition (Forcing triposes)

Given a complete Heyting (or Boolean) algebra H:

- The functor $P := H^{(-)} : \mathbf{Set}^{\mathsf{op}} \to \mathbf{HA}$ is a tripos
- ② For all $X, Y \in \mathbf{Set}, f: X \to Y$:
 - $P(X) := H^X$ is a complete HA
 - $P(f) : P(Y) \rightarrow P(X)$ is a morphism of complete HAs
- **o** Prop := H and tr := id_H (generic predicate)

Such a tripos is called a forcing tripos

Forcing triposes are the ones underlying Kripke (or Cohen) forcing

Given a family of implicative structures $(\mathcal{A}_i)_{i \in I} = (\mathcal{A}_i, \prec_i, \rightarrow_i)_{i \in I}$

• The product $\mathscr{A} = \prod_{i \in I} \mathscr{A}_i$ of the family $(\mathscr{A}_i)_{i \in I} = (\mathscr{A}_i, \preceq_i, \rightarrow_i)_{i \in I}$ is clearly an implicative structure, where:

$$(a_i)_{i\in I} \preccurlyeq (b_i)_{i\in I} \equiv (\forall i \in I) a_i \preccurlyeq_i b_i$$
 (product ordering)
 $(a_i)_{i\in I} \rightarrow (b_i)_{i\in I} := (a_i \rightarrow_i b_i)_{i\in I}$ (componentwise)

Proposition (Properties of the product $\prod_{i \in I} \mathscr{A}_i$)

In the product $\mathscr{A} = \prod_{i \in I} \mathscr{A}_i$, we have:

for all
$$a, b \in \mathcal{A}$$

for all closed λ -terms t

$$\bullet \ \mathbf{S}^{\mathscr{A}} = \left(\mathbf{S}^{\mathscr{A}_i}\right)_{i \in I} \quad \mathbf{K}^{\mathscr{A}} = \left(\mathbf{K}^{\mathscr{A}_i}\right)_{i \in I} \quad \mathbf{c}^{\mathscr{A}} = \left(\mathbf{c}^{\mathscr{A}_i}\right)_{i \in I} \quad \text{etc.}$$

for all $a, b \in \mathcal{A}$

Given a family of implicative structures $(\mathscr{A}_i)_{i \in I} = (\mathscr{A}_i, \prec_i, \rightarrow_i)_{i \in I}$

- The product $S = \prod_{i \in I} S_i$ of a family of separators $(S_i \subseteq \mathscr{A}_i)_{i \in I}$ is clearly a separator of the product $\mathscr{A} = \prod_{i \in I} \mathscr{A}_i$
- Moreover, we have: $a \vdash_S b \Leftrightarrow (\forall i \in I) \ a_i \vdash_{S_i} b_i$ (for all $a, b \in \mathscr{A}$)

Proposition (Factorization of the quotient)

$$\mathscr{A}/S = \left(\prod_{i \in I} \mathscr{A}_i\right) / \left(\prod_{i \in I} S_i\right) \cong \prod_{i \in I} (\mathscr{A}_i/S_i)$$
 (iso. in **HA**)

• **Beware!** We only have the inclusions

$$S^0(\mathscr{A}) \subseteq \prod_{i \in I} S^0(\mathscr{A}_i)$$
 (intuitionistic core)
 $S^0_{\mathcal{K}}(\mathscr{A}) \subseteq \prod_{i \in I} S^0_{\mathcal{K}}(\mathscr{A}_i)$ (classical core)

Power of an implicative structure

Given an implicative structure $\mathscr{A} = (\mathscr{A}, \preceq, \rightarrow)$ and a set I, we write

$$\mathscr{A}^{I} := (\mathscr{A}^{I}, \preceq^{I}, \rightarrow^{I}) := \prod_{i \in I} \mathscr{A}$$
 (power implicative structure)

Each separator $S \subseteq \mathscr{A}$ induces two separators in \mathscr{A}^I :

- The power separator $S^I := \prod_{i \in I} S \subseteq \mathscr{A}^I$, for which we have: $\mathscr{A}^{I}/S^{I} \cong (\mathscr{A}/S)^{I}$
- The uniform power separator $S[I] \subseteq S^I \subseteq \mathscr{A}^I$ defined by:

$$S[I] := \{(a_i)_{i \in I} \in \mathscr{A}^I : (\exists s \in S)(\forall i \in I) s \preccurlyeq a_i\} = \uparrow \delta(S)$$

where $\uparrow \delta(S)$ is the upwards closure (in \mathscr{A}^I) of the image of S through the canonical map $\delta: \mathscr{A} \to \mathscr{A}^I$ defined by $\delta(a) := (i \mapsto a) \in \mathscr{A}^I$ for all $a \in \mathscr{A}$

• In general, the inclusion $S[I] \subset S^I$ is strict!

Properties of the uniform power separator

Let $\mathscr{A} = (\mathscr{A}, \preceq, \rightarrow)$ be an implicative structure, and I a set.

Each separator $S \subseteq \mathscr{A}$ induces a uniform power separator $S[I] \subseteq \mathscr{A}^I$

Proposition (Entailment w.r.t. S[I])

For all families $a = (a_i)_{i \in I}, b = (b_i)_{i \in I} \in \mathscr{A}^I$, we have:

$$a \vdash_{S[I]} b \Leftrightarrow (a \to b) \in S[I] \Leftrightarrow \bigwedge_{i \in I} (a_i \to b_i) \in S$$

 $a \dashv \vdash_{S[I]} b \Leftrightarrow (a \leftrightarrow b) \in S[I] \Leftrightarrow \bigwedge_{i \in I} (a_i \leftrightarrow b_i) \in S$

Recall that $a \leftrightarrow b := (a \rightarrow b) \times (b \rightarrow a)$ (in any implicative structure)

We can also notice that:

•
$$S^0(\mathscr{A}^I) = S^0(\mathscr{A})[I] \subseteq (S^0(\mathscr{A}))^I$$
 (intuitionistic core of \mathscr{A}^I)

•
$$S^0_{\mathcal{K}}(\mathscr{A}^I) = S^0_{\mathcal{K}}(\mathscr{A})[I] \subseteq (S^0_{\mathcal{K}}(\mathscr{A}))^I$$
 (classical core of \mathscr{A}^I)

Let $(\mathscr{A}, S) = (\mathscr{A}, \preceq, \rightarrow, S)$ be an implicative algebra For each set I, we let $P(I) := \mathscr{A}^I/S[I]$

• The poset $(P(I), \leq_{S[I]})$ is a Heyting algebra, where:

$$[a] \to [b] = [(a_i \to b_i)_{i \in I}]$$

$$[a] \land [b] = [(a_i \times b_i)_{i \in I}] \qquad \qquad \top = [(\top)_{i \in I}]$$

$$[a] \lor [b] = [(a_i + b_i)_{i \in I}] \qquad \qquad \bot = [(\bot)_{i \in I}]$$

- The correspondence $I \mapsto P(I)$ is functorial:
 - Each $f: I \to J$ induces a substitution map $P(f): P(J) \to P(I)$:

$$P(f)([(a_j)_{j\in J}]) := [(a_{f(i)})_{i\in I}] \in P(I)$$

- The map $P(f): P(J) \to P(I)$ is a morphism of Heyting algebras
- $P(id_I) = id_{P(I)}$ and $P(g \circ f) = P(f) \circ P(g)$ (contravariance)

Therefore: $P : \mathbf{Set}^{op} \to \mathbf{HA}$ is a (contravariant) functor

Theorem (Associated tripos)

The functor P : $\mathbf{Set}^{\mathsf{op}} \to \mathbf{HA}$ is a tripos

Recall: Tripos = categorical model of higher-order logic

• Each substitution map $P(f) : P(J) \rightarrow P(I)$ has both left and right adjoints $\exists (f), \forall (f) : P(I) \rightarrow P(J)$:

$$\exists (f) \big([(a_i)_{i \in I}] \big) := \left[\left(\exists_{i \in f^{-1}(j)} a_i \right)_{j \in J} \right] \in \mathsf{P}(J)$$

$$\forall (f) ([(a_i)_{i \in I}]) := [(\forall_{i \in f^{-1}(j)} a_i)_{i \in J}] \in P(J)$$

(+ satisfies the full Beck-Chevalley condition)

 There is a propositional object Prop ∈ Set together with a generic predicate $tr \in P(Prop)$:

$$\mathsf{Prop} := \mathscr{A} \qquad \qquad \mathsf{tr} := [\mathsf{id}_\mathscr{A}] \in \mathsf{P}(\mathsf{Prop})$$

To sum up...

- The above construction encompasses many well-known tripos constructions:
 - Forcing triposes, which correspond to the case where $(\mathscr{A}, \preccurlyeq, \rightarrow)$ is a complete Heyting/Boolean algebra, and $S = \{\top\}$ (i.e. no quotient)
 - Triposes induced by total combinatory algebras... (int. realizability)
 ... and even by partial combinatory algebras, via some completion trick
 - Triposes induced by abstract Krivine structures (class. realizability)
- As for any tripos, each implicative tripos can be turned into a topos via the standard tripos-to-topos construction
- Question: What do implicative triposes bring new w.r.t.
 - Forcing triposes (intuitionistic or classical)?
 - Intuitionistic realizability triposes?
 - Classical realizability triposes?

The fundamental diagram

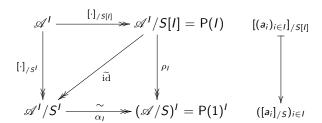
Given an implicative algebra $\mathscr{A} = (\mathscr{A}, \prec, \rightarrow, S)$ and a set I, the separator $S \subseteq \mathscr{A}$ induces two separators in \mathscr{A}^I :

- The power separator $S^I \subset \mathscr{A}^I$
- The uniform power separator $S[I] \subseteq S^I \subseteq \mathscr{A}^I$ defined by:

$$S[I] := \{(a_i)_{i \in I} \in \mathscr{A}^I : (\exists s \in S)(\forall i \in I) s \preccurlyeq a_i\}$$

We thus get the following (commutative) diagram: (in Set/HA)

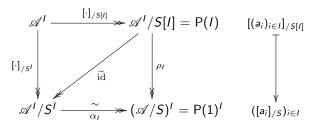
$$\begin{array}{c|c}
\mathscr{A}^{I} & \xrightarrow{[\cdot]/S[I]} & \mathscr{A}^{I}/S[I] = \mathsf{P}(I) & [(a_{i})_{i \in I}]/S[I] \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\mathscr{A}^{I}/S^{I} & \xrightarrow{\alpha_{I}} & (\mathscr{A}/S)^{I} = \mathsf{P}(1)^{I} & ([a_{i}]_{/S})_{i \in I}
\end{array}$$



Proposition

The following are equivalent:

- The map $\rho_I: (\mathscr{A}^I/S[I]) \to (\mathscr{A}/S)^I$ is injective
- **②** The map $\rho_I: (\mathscr{A}^I/S[I]) \to (\mathscr{A}/S)^I$ is an isomorphism (of HAs)
- The separator $S \subseteq \mathscr{A}$ is closed under all *I*-indexed meets.



Proof.

- Recall that in **HA**, a morphism is an iso if and only if it is bijective. Since ρ is surjective and α_I is an iso, it is clear that:
 - (1) ρ injective \Leftrightarrow (2) ρ iso. \Leftrightarrow id iso. \Leftrightarrow (3) $S[I] = S^I$
- (3) \Rightarrow (4) Let $(a_i)_{i \in I} \in S^I$. Since $S^I = S[I]$ (by (3)), there is $s \in S$ such that $s \preccurlyeq a_i$ for all $i \in I$. Hence $s \preccurlyeq \bigwedge_{i \in I} a_i \in S$.
- (4) \Rightarrow (3) Let $(a_i)_{i \in I} \in S^I$. By (4), we have that $s := \bigwedge_{i \in I} a_i \in S$. Since $s \preccurlyeq a_i$ for all $i \in I$, we get $(a_i)_{i \in I} \in S[I]$. Therefore: $S^I = S[I]$.

Proposition and definition (Forcing triposes)

Given a complete Heyting (or Boolean) algebra H:

- The functor $P := H^{(-)} : \mathbf{Set}^{\mathsf{op}} \to \mathbf{HA}$ is a tripos
- ② For all $I, J \in \mathbf{Set}, f : I \to J$:
 - $P(I) := H^I$ is a complete HA
 - $P(f) : P(J) \rightarrow P(I)$ is a morphism of complete HAs
- \bullet Prop := H and tr := id_H (generic predicate)

Such a tripos is called a forcing tripos

- Forcing triposes are the ones underlying Kripke (or Cohen) forcing
- Each forcing tripos (induced by H) can be seen as an implicative tripos, constructed from the implicative algebra

$$(\mathscr{A}, \preccurlyeq, \rightarrow, S) := (H, \leq_H, \rightarrow_H, \{\top_H\})$$

Definition (Isomorphism of triposes)

Two triposes $P, P' : \mathbf{Set}^{op} \to \mathbf{HA}$ are isomorphic when there is a natural isomorphism $\beta: P \Rightarrow P'$ (in the category **HA**):

$$\begin{vmatrix}
I & P(I) & \frac{\beta_I}{\sim} > P'(I) \\
\downarrow^f & P(f) & & \uparrow^{P'(f)} \\
J & P(J) & \frac{\sim}{\beta_J} > P'(J)
\end{vmatrix}$$

- We have seen that each Heyting tripos is isomorphic to a particular implicative tripos, taking $(\mathscr{A}, \preceq, \to, S) := (H, \leq_H, \to_H, \{\top\})$
- But more generally, what are the implicative triposes that are isomorphic to a forcing tripos?

Theorem

Let P : **Set**^{op} \rightarrow **HA** be the tripos induced by an implicative algebra $(\mathscr{A}, \preceq, \rightarrow, S)$. Then the following are equivalent:

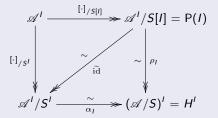
- The tripos P is isomorphic to a forcing tripos
- ② The separator $S \subseteq \mathscr{A}$ is a principal filter of \mathscr{A}
- **3** The separator $S \subseteq \mathscr{S}$ is finitely generated and $\pitchfork^{\mathscr{A}} \in S$

Remark: These conditions do not imply that $(\mathscr{A}, \preccurlyeq, \rightarrow)$ is a Heyting algebra! **Counter-example:** Krivine realizability with an instruction \pitchfork (in the separator)

Proof.

- We have already seen that $(3) \Leftrightarrow (2)$.
- So it remains to prove that $(1) \Rightarrow (2)$ and $(2) \Rightarrow (1)$ (...

• (2) \Rightarrow (1) When $S \subseteq \mathscr{A}$ is a principal filter of \mathscr{A} , we have seen that $H := \mathscr{A}/S$ is a complete Heyting algebra. Moreover, since S is closed under arbitrary meets, the arrow ρ_I of the fundamental diagram



is an isomorphism of (complete) Heyting algebras for all sets I. It is also clearly natural in I, so that we can take $\beta_I := \rho_I$. (...)

• (1) \Rightarrow (2) Assume that there is a natural isomorphism $\beta_I : P(I) \xrightarrow{\sim} H^I$ (in I) for some complete Heyting algebra H. In particular, we have $\beta_1: P(1) \stackrel{\sim}{\to} H^1 = H$, so that $\mathscr{A}/S = P(1) \cong H$ is a complete HA.

Now, fix a set I, and write $c_i := \{0 \mapsto i\} : 1 \to I$ for each $i \in I$.

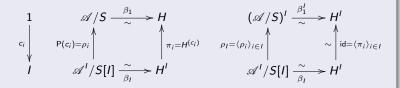
Via the two (contravariant) functors $P, H^{(-)} : \mathbf{Set}^{op} \to \mathbf{HA}$, we easily check that the arrow $c_i: 1 \rightarrow I$ is mapped to:

$$\mathsf{P}(c_i) =
ho_i : \mathscr{A}/S[I] o \mathscr{A}/S$$
 and $H^{(c_i)} = \pi_i : H^I o H$

where:

- ρ_i is the *i*th component of the surjection $\rho_I: \mathscr{A}^I/S[I] \to (\mathscr{A}/S)^I$ of the fundamental diagram, given by: $\rho_i([a]/SIII) = [a_i]/S$
- π_i is the *i*th projection from H^I to H

• (1) \Rightarrow (2) (continued) We get the following commutative diagrams:



- 1st commutative square (for $i \in I$) comes from the naturality of β
- 2nd commutative square is deduced from the first one by glueing the arrows ρ_i and π_i for all indices $i \in I$

From the 2nd commutative square, it is clear that $\rho_I: \mathscr{A}^I/S[I] \to (\mathscr{A}/S)^I$ is an isomorphism for all sets I. Therefore, the separator $S \subseteq \mathscr{A}$ is closed under arbitrary meets, which means that it is a principal filter.

Plan

- Introduction
- 2 Implicative structures
- Separation
- The implicative tripos
- Conclusion

We introduced implicative algebras, a simple algebraic structure that is common to forcing and realizability (intuitionistic & classical)

• Relies on the fundamental idea that truth values can be manipulated as generalized realizers (via the operations of the λ -calculus)

$$Proof = Program = Type = Formula$$

Criterion of truth given by a separator

- (generalizing filters)
- Each implicative algebra induces a tripos, thus encompassing:
 - All forcing triposes (intuitionistic & classical)
 - Most intuitionistic realizability triposes
 - All classical realizability triposes
- In this structure: forcing = non deterministic realizability
- Classical implicative structures have the very same expressiveness as
 Abstract Krivine Structures (with a much lighter machinery)

nciusion

However, implicative algebras can be used directly to construct models of Zermelo-Fraenkel set theory (ZF/IZF)

- Same technique as for constructing Boolean-valued models of ZF (or realizability models of IZF)
- Technically, the construction is not the same in the intuitionistic case (IZF) and the classical case (ZF) (due to reasons of polarity)
- Classical interpretation of dependent choices (DC) using quote
- A particular model with fascinating properties: the model of threads
 [Krivine 12] Realizability algebras II: new models of ZF + DC

Open problems & Future work:

- Structure of classical realizability models of set theory?
- What is the equivalent of the generic set?
- New relative consistency results?