
Intro Implicative structures Separation The implicative tripos Concl

Implicative algebras: a new foundation
for forcing and realizability

Alexandre Miquel

E
Q
U
I
P
O

. D E . L
O -
G
I
C
A

U

D
E L A

R

July 21th, 2016 – Piriápolis

Intro Implicative structures Separation The implicative tripos Concl

Introduction

Krivine’s classical realizability is a complete reformulation of Kleene
realizability that takes into account classical reasoning

Based on Griffin ’90 discovery:

call/cc : ((φ⇒ ψ)⇒ φ)⇒ φ (Peirce’s law)

New models for PA2 and ZF (+ DC) [Krivine 03, 09, 12]

Many connections between classical realizability and Cohen forcing

Combination of classical realizability and forcing +
Generalization to classical realizability algebras [Krivine 11, 12]

Computational analysis of Cohen forcing [M. 11]

Fascinating model-theoretic perspectives [Krivine 12, 15]

Classical realizability = non commutative forcing ?

This talk: An attempt to define a simple algebraic structure that
subsumes both forcing and intuitionistic/classical realizability

Intro Implicative structures Separation The implicative tripos Concl

The significance of classical realizability

Tarski models: JφK ∈ {0; 1}
Interprets classical provability (correctness/completeness)

Intuitionistic realizability: JφK ∈ P(Λ) [Kleene 45]

Interprets intuitionistic proofs
Independence results in intuitionistic theories
Definitely incompatible with classical logic

Cohen forcing: JφK ∈ P(C) [Cohen 63]

Independence results, in classical theories
(Negation of continuum hypothesis, Solovay’s axiom, etc.)

Boolean-valued models: JφK ∈ B [Scott, Solovay, Vopěnka]

Classical realizability: JφK ∈ P(Λc) [Krivine 94, 01, 03, 09, 11–]

Interprets classical proofs
Generalizes Tarski models... and forcing!

Intro Implicative structures Separation The implicative tripos Concl

Heyting/Boolean-valued model vs realizability

In Boolean/Heyting-valued models (or forcing):

conjunction interpreted as a meet/intersection...

universal quantification interpreted as an infinitary intersection
 amounts to an infinitary conjunction

In intuitionistic/classical realizability:

conjunction interpreted as a Cartesian product

universal quantification interpreted as an infinitary intersection

∧ = ∀ = ∩ ∧ = ×, ∀ = ∩

Int. logic Heyting-valued models Int. realizability

(Kripke forcing)

Class. logic Boolean-valued models Class. realizability

(Cohen forcing)

Intro Implicative structures Separation The implicative tripos Concl

Plan

1 Introduction

2 Implicative structures

3 Separation

4 The implicative tripos

5 Conclusion

Intro Implicative structures Separation The implicative tripos Concl

Plan

1 Introduction

2 Implicative structures

3 Separation

4 The implicative tripos

5 Conclusion

Intro Implicative structures Separation The implicative tripos Concl

Implicative structures

Definition (Implicative structure)

An implicative structure is a triple (A ,4,→) where

(1) (A ,4) is a complete (meet semi-)lattice

(2) (→) : A 2 → A is a binary operation such that:

(2a) a′ 4 a, b 4 b′ entails (a→ b) 4 (a′ → b′) (a, a′, b, b′ ∈ A)

(2b)
k

b∈B

(a→ b) = a→
k

b∈B

b (for all B ⊆ A)

Write ⊥ (resp. >) the smallest (resp. largest) element of A

When B = ∅, axiom (2b) gives: (a→ >) = > (a ∈ A)

Intro Implicative structures Separation The implicative tripos Concl

Examples of implicative structures (1/2)

Complete Heyting algebras

Recall that a Heyting algebra is a bounded lattice (H,4) that has
relative pseudo-complements

a→ b := max{c ∈ H : (c f a) 4 b} (Heyting’s implication)

for all a, b ∈ H, so that we get the adjunction:

(c f a) 4 b ⇔ c 4 (a→ b) (Heyting’s adjunction)

Heyting algebras are models of the intuitionistic propositional calculus. Boolean
algebras are the “classical” Heyting algebras, in which ¬¬a = a for all a ∈ H

When a Heyting algebra (H,4) is complete (i.e. has all infinitary
meets and joins), it induces an implicative structure (H,4,→)

Complete Boolean algebras (as a particular case of compl. Heyting algebras)

Intro Implicative structures Separation The implicative tripos Concl

Examples of implicative structures (2/2)

Total combinatory algebras

Each total combinatory algebra (P, · , k, s) induces an implicative
structure (A ,4,→) defined by

A := P(P) (sets of combinators)

a 4 b := a ⊆ b (inclusion)

a→ b := {z ∈ P : ∀x ∈ a, z · x ∈ b} (Kleene’s implication)

When application is partial, we only get a quasi-implicative structure (cf next slide)

Abstract Krivine structures

Each abstract Krivine structure (AKS)

(Λ,Π,⊥⊥,@, push, store, K, S, cc,PL)

induces an implicative structure (A ,4,→) defined by:

A := P(Π) (sets of stacks)

a 4 b := a ⊇ b (reverse inclusion)

a→ b := a⊥⊥ · b (Krivine’s implication)

Intro Implicative structures Separation The implicative tripos Concl

Relaxing the definition

In some situations, it is desirable to have (a→ >) 6= >

Definition (Quasi-implicative structure)

Same definition as for an implicative structure, but axiom

(2b)
k

b∈B

(a→ b) = a→
k

b∈B

b (if B 6= ∅)

only required for the non-empty subsets B ⊆ A

Examples:

Each partial combinatory algebra (P, · , k, s) more generally induces
a quasi-implicative structure: (P(P),⊆,→)

This structure is an implicative structure iff application · is total

Usual notions of reducibility candidates (Tait, Girard, Parigot, etc.)
induce quasi-implicative structures (built from the λ-calculus)

Intro Implicative structures Separation The implicative tripos Concl

Viewing truth values as (generalized) realizers (1/2)

The Curry-Howard correspondence:

Syntax: Proof = Program : Formula = Type

Semantics: Realizer ∈ Truth value

But in most semantics, we can associate to every realizer t its
principal type [t], i.e. the smallest truth value containing t:

t : A (typing) iff [t] ⊆ A (subtyping)

Identifying t with [t], we get the inclusion:

Realizers ⊂ Truth values

Moreover, we shall see that application and abstraction can be lifted
at the level of truth values. Therefore:

Truth values = Generalized realizers

Intro Implicative structures Separation The implicative tripos Concl

Viewing truth values as (generalized) realizers (2/2)

Fundamental ideas underlying implicative structures:

1 Operations on λ-terms can be lifted to truth values

2 Truth values can be used as generalized realizers

3 Realizers and truth values live in the same world!

Proof = Program = Type = Formula

(The ultimate Curry-Howard identification)

In an implicative structure, the relation a 4 b may read:

a is a subtype of b (viewing a and b as truth values)

a has type b (viewing a as a realizer, b as a truth value)

a is more defined than b (viewing a and b as realizers)

In particular:

ordering of sybtyping 4 ≡ reverse Scott ordering w

Intro Implicative structures Separation The implicative tripos Concl

Encoding application

Let A = (A ,4,→) be an implicative structure

Definition (Application)

Given a, b ∈ A , we let: ab :=
k
{c ∈ A : a 4 (b → c)}

From the point of view of the Scott ordering:

ab :=
⊔
{c ∈ A : (b → c) v a}

Properties:

1 If a 4 a′ and b 4 b′, then ab 4 a′b′ (Monotonicity)

2 (a→ b)a 4 b (“β-reduction”)

3 a 4 (b → ab) (“η-expansion”)

4 ab = min{c ∈ a : a 4 (b → c)} (Minimum)

5 ab 4 c iff a 4 (b → c) (Adjunction)

Intro Implicative structures Separation The implicative tripos Concl

Encoding abstraction

Let A = (A ,4,→) be an implicative structure

Definition (Abstraction)

Given f : A → A , we let: λf :=
k

a∈A

(a→ f (a))

From the point of view of the Scott ordering:

λf :=
⊔
a∈A

(a→ f (a))

Properties:

1 If f 4 g (pointwise), then λf 4 λg (Monotonicity)

2 (λf)a 4 f (a) (β-reduction)

3 a 4 λ(x 7→ ax) (η-expansion)

Intro Implicative structures Separation The implicative tripos Concl

Encoding the λ-calculus

Let A = (A ,4,→) be an implicative structure

To each closed λ-term t with parameters (i.e. constants) in A ,
we associate a truth value tA ∈ A :

aA := a
(λx . t)A := λ(a 7→ (t{x := a})A)

(tu)A := tA uA

Properties:

β-rule: If t �β t′, then (t)A 4 (t′)A

η-rule: If t �η t′, then (t)A < (t′)A

Remarks:

This is not a denotational model of the λ-calculus!

The map tA is not injective in general

Intro Implicative structures Separation The implicative tripos Concl

Semantic typing (1/2)

Elements of A can be used as semantic types for λ-terms:

Types: a ∈ A

Terms: λ-terms with parameters in A

Contexts: Γ ≡ x1 : a1, . . . , xn : an (a1, . . . , an ∈ A)

Judgment: Γ ` t : a

Remark: Each context Γ ≡ x1 : a1, . . . , xn : an can also be
used as a substitution: Γ ≡ x1 := a1, . . . , xn := an

The validity of a judgment is defined directly (i.e. semantically);
not from a set of inference rules:

Definition (Semantic validity)

Γ ` t : a :≡ FV (t) ⊆ dom(Γ) and (t[Γ])A 4 a

Intro Implicative structures Separation The implicative tripos Concl

Semantic typing (2/2)

Definition (Semantic validity)

Γ ` t : a :≡ FV (t) ⊆ dom(Γ) and (t[Γ])A 4 a

Proposition

The following semantic typing rules are valid:

Γ ` x : a
((x :a)∈Γ)

Γ ` a : a Γ ` t : >
(FV (t)⊆dom(Γ))

Γ, x : a ` t : b

Γ ` λx . t : a→ b
Γ ` t : a→ b Γ ` u : a

Γ ` tu : b

Γ ` t : ai (for all i∈I)

Γ ` t :
k

i∈I

ai

Γ ` t : a
Γ ` t : a′

(a4a′)
Γ ` t : a
Γ′ ` t : a

(Γ′4Γ)

Note: Γ′ 4 Γ means: Γ′(x) 4 Γ(x) for all x ∈ dom(Γ) ⊆ dom(Γ′).

Intro Implicative structures Separation The implicative tripos Concl

Remarkable identities (1/2)

Recall that in (Curry-style) system F, we have:

I := λx . x : ∀α (α→ α)

K := λxy . x : ∀α, β (α→ β → α)

S := λxyz . xz(yz) : ∀α, β, γ ((α→ β → γ)→ (α→ β)→ α→ γ)

Proposition

In any implicative structure A = (A ,4,→) we have:

IA := (λx . x)A =
k

a

(a→ a)

KA := (λxy . x)A =
k

a,b

(a→ b → a)

SA := (λxyz . xz(yz))A =
k

a,b,c

((a→ b → c)→ (a→ b)→ a→ c)

Intro Implicative structures Separation The implicative tripos Concl

Remarkable identities (2/2)

The same property holds for:

C := λxyz . xzy : ∀α, β, γ ((α→ β → γ)→ β → α→ γ)

W := λxy . xyy : ∀α, β ((α→ α→ β)→ α→ β)

but not for

II := (λx . x)(λx . x) : ∀α (α→ α)

(Thanks to a remark of Étienne Miquey)

By analogy, we let:

ccA :=
k

a,b

(((a→ b)→ a)→ a)

=
k

a

((¬a→ a)→ a)

(Peirce’s law)

(where ¬a := (a→ ⊥))

From this, we extend the encoding of the λ-calculus to all λ-terms
enriched with the constant cc (= proof-like λc -terms)

Intro Implicative structures Separation The implicative tripos Concl

Particular case: A is a complete Heyting algebra (1/2)

Complete Heyting algebras are the particular implicative structures
A = (A ,4,→) where → is defined from the ordering 4 by

a→ b := max{c ∈ A : (c f a) 4 b}

Remark: Complete Heyting (or Boolean) algebras are the structures underlying
forcing (in the sense of Kripke or Cohen)

Proposition

When A = (A ,4,→) is a complete Heyting algebra:

1 For all a, b ∈ A : ab = a f b (application = binary meet)

2 For all λ-terms t with free variables x1, . . . , xk (k ≥ 0)
and for all a1, . . . , ak ∈ A , we have:

(t{x := a1, . . . , x := ak})A < a1 f · · ·f ak
3 In particular, when t is closed: (t)A = >
4 A is a (complete) Boolean algebra iff ccA = >

Intro Implicative structures Separation The implicative tripos Concl

Particular case: A is a complete Heyting algebra (2/2)

Proof.

1 For all c ∈ A , we have: ab 4 c ⇔ a 4 (b → c) ⇔ a f b 4 c,
hence ab = a f b.

2 We prove that (t{~x := ~a})A < a1 f · · ·f ak by induction on t

t ≡ x (variable). Obvious.

t ≡ t1t2 (application). Obvious from point 1.

t ≡ λx0 . t0 (abstraction). In this case, we have:

(t{~x := ~a})A =
k

a0

(
a0 → (t0{x0 := a0, ~x := ~a})A)

<
k

a0

(
a0 → a0 f a1 f · · ·f ak

)
(by IH)

< a1 f · · ·f ak

using the relation b 4 (a→ a f b) of Heyting Algebras.

3 In particular, when t is closed, we get: (t)A < >

4 (A ,4) Boolean algebra iff ccA = >: Obvious.

Intro Implicative structures Separation The implicative tripos Concl

Logical strength of an implicative structure

Warning! We may have (t)A = ⊥ for some closed λ-term t.

Intuitively, this means that the corresponding term is inconsistent in
(the logic represented by) the implicative structure A

We say that the implicative structure A is:

intuitionistically consistent when (t)A 6= ⊥ for all closed λ-terms

classically consistent when (t)A 6= ⊥ for all closed λ-terms with cc

Examples:

Every non-degenerated complete Heyting algebra is int. consistent

Every non-degenerated complete Boolean algebra is class. consistent

Every implicative structure induced by a total combinatory algebra is
intuitionistically consistent

Every implicative structure induced by an AKS whose pole ⊥⊥ is
coherent (cf [Krivine’12]) is classically consistent

Intro Implicative structures Separation The implicative tripos Concl

Two trivial examples...

Trivial example 1:

Given a complete lattice (A ,4), we let

a→ b := b (for all a, b ∈ A)

Clearly, (A ,4,→) is an implicative structure

In this structure, we have: IA :=
k

a

(a→ a) =
k

a

a = ⊥ (!)

Trivial example 2:

Given a complete lattice (A ,4), we let

a→ b := > (for all a, b ∈ A)

Again, (A ,4,→) is an implicative structure!

In this structure, we have: IA :=
k

a

(a→ a) = >, but

(II)A := >> =
k
{c ∈ A : > 4 (> → c)} =

k
A = ⊥ (!)

Intro Implicative structures Separation The implicative tripos Concl

... and a non trivial example (1/2)

(The following example is inspired from Girard’s phase semantics for LL)

Let (M, ·, 1) be a commutative monoid. We let:

A := P(M)

a 4 b := a ⊆ b

a→ b := {γ ∈ M : (∀α∈ a) γα ∈ b} (for all a, b ∈ A)

Clearly, (A ,4,→) is an implicative structure
(since the product · is a total operation)

We easily check that for all a, b ∈ A :

ab := a · b = {αβ : α ∈ a, β ∈ b}
Therefore:

ab = ba (application is commutative)

(ab)c = a(bc) (application is associative)

aa 6= a, in general (application is not idempotent)

Intro Implicative structures Separation The implicative tripos Concl

... and a non trivial example (2/2)

Proposition

1 In the implicative structure (A ,4,→) = (P(M),⊆,→):

IA := (λx . x)A = {1} 6= ⊥
CA := (λxyz . xzy)A = {1} 6= ⊥
BA := (λxyz . x(yz))A = {1} 6= ⊥

2 Moreover, if we assume that α2 6= α for some α ∈ M, then:

KA := (λxy . x)A = ∅ = ⊥
WA := (λxy . xyy)A = ∅ = ⊥
SA := (λxyz . xz(yz))A = ∅ = ⊥

More generally, for each closed λ-term t, we (should) have:

(t)A =

{
{1} if t is linear

∅ otherwise
(to be checked)

Intro Implicative structures Separation The implicative tripos Concl

Plan

1 Introduction

2 Implicative structures

3 Separation

4 The implicative tripos

5 Conclusion

Intro Implicative structures Separation The implicative tripos Concl

Separators

Let A = (A ,4,→) be an implicative structure

Definition (Separator)

A separator of A is a subset S ⊆ A such that:

(1) If a ∈ S and a 4 b, then b ∈ S (upwards closed)

(2) KA = (λxy . x)A ∈ S and SA = (λxyz . xz(yz))A ∈ S

(3) If (a→ b) ∈ S and a ∈ S , then b ∈ S (modus ponens)

We say that S is consistent (resp. classical) when ⊥ /∈ S (resp. ccA ∈ S)

Remarks:

Under (1), axiom (3) is equivalent to:

(3′) If a, b ∈ S , then ab ∈ S (closure under application)

In a complete Heyting algebra: separator = filter

But in general, separators are not closed under binary meets

Intro Implicative structures Separation The implicative tripos Concl

λ-terms and separators

Intuition: Separator S ⊆ A = criterion of truth (in A)

All separators are closed under the operations of the λ-calculus:

Proposition

Given a separator S ⊆ A :

1 For all λ-terms t with free variables x1, . . . , xk and for all a1, . . . , ak ∈ S ,
we have: (t{x1 := a1, . . . , xk := ak})A ∈ S

2 For all closed λ-terms t: (t)A ∈ S

Alternative formulation:

Given a closed λ-term t with parameters in S :

` t : a implies a ∈ S

If a has a “proof” t (possibly using “axioms” ∈ S), then a is true (∈ S)

Intro Implicative structures Separation The implicative tripos Concl

Intuitionistic and classical cores

Definition (intuitionistic & classical cores)

Given an implicative algebra we write:

S0
J (A) the smallest separator of A (intuitionistic core)

S0
K (A) the smallest classical separator of A (classical core)

We easily check that:

S0
J (A) = ↑{(t)A : t closed λ-term}
S0
K (A) = ↑{(t)A : t closed λ-term with cc}

writing ↑B the upwards closure of a subset B ⊆ A

Proposition

An implicative algebra A is intuitionistically (resp. classically) consistent
if and only if ⊥ /∈ S0

J (A) (resp. ⊥ /∈ S0
K (A))

Intro Implicative structures Separation The implicative tripos Concl

Encoding conjunction and disjunction

In any implicative structure, conjunction and disjunction are defined by:

a× b :=
k

c

(
(a→ b → c)→ c

)
(conjunction)

a + b :=
k

c

(
(a→ c)→ (b → c)→ c

)
(disjunction)

Proposition

The following semantic typing rules are valid:

Γ ` t : a Γ ` u : b
Γ ` λz . z t u : a× b

Γ ` t : a× b

Γ ` t (λxy . x) : a

Γ ` t : a× b

Γ ` t (λxy . y) : b

Γ ` t : a
Γ ` λzw . z t : a + b

Γ ` t : b
Γ ` λzw .w t : a + b

Γ ` t : a + b Γ, x : a ` u : c Γ, y : b ` v : c

Γ ` t (λx . u) (λy . v) : c

Moreover, we have: (λz . z a b)A = 〈a, b〉A = a× b (pairing = conjunction)

Intro Implicative structures Separation The implicative tripos Concl

Encoding quantifiers

Given a family (ai)i∈I , we let:

∀
i∈I

ai :=
k

i∈I

ai

∃
i∈I

ai :=
k

c∈A

(k
i∈I

(
ai → c) → c

)

Proposition

The following semantic typing rules are valid:

Γ ` t : ai (for all i∈I)

Γ ` t : ∀i∈I ai
Γ ` t : ∀i∈I ai

Γ ` t : ai0
(i0∈I)

Γ ` t : ai0
Γ ` λz . z t : ∃i∈I ai

(i0∈I)
Γ ` t : ∃i∈I ai Γ, x : ai ` u : c (for all i∈I)

Γ ` t (λx . u) : c

Note: The simpler encoding ∃i∈I ai :=
b

i∈I ai does not work
in classical realizability

Intro Implicative structures Separation The implicative tripos Concl

Interpreting 1st-order logic

Definition (Interpretation of a 1st-order language in A)

An interpretation of a 1st-order language L in A is given by

an interpretation J·K of 1st-order terms in some set M 6= ∅
a function JpK : Mk → A for each k-ary predicate symbol p

Each formula φ of L (with a valuation ρ) is interpreted in A by:

Jp(t1, . . . , tn)Kρ = JpK(Jt1Kρ, . . . , JtkKρ)

Jφ⇒ ψKρ = JφKρ → JψKρ J¬φKρ = JφKρ → ⊥
Jφ ∧ ψKρ = JφKρ × JψKρ Jφ ∨ ψKρ = JφKρ + JψKρ
J∀x φKρ = ∀v∈MJφKρ,x←v J∃x φKρ = ∃v∈MJφKρ,x←v

Theorem (Soundness)

If φ is an intuitionistic (resp. classical) tautology, then:

JφKρ ∈ S0
J (A) (resp. JφKρ ∈ S0

K (A))

Remark: The above construction easily extends to 2nd-/higher-order logic

Intro Implicative structures Separation The implicative tripos Concl

Implicative algebras

Given an interpretation J·K of a 1st-order language L in A , each
separator S ⊆ A induces a theory TS defined by:

TS := {φ closed : JφK ∈ S}

The larger the separator S , the larger the theory TS

The theory TS is consistent iff ⊥A /∈ S

Definition (Implicative algebra)

An implicative algebra is a quadruple (A ,4,→,S) where

(A ,4,→) is an implicative structure

S ⊆ A is a separator

The implicative algebra (A ,4,→, S) is

consistent when ⊥ /∈ S

classical when ccA ∈ S

Intro Implicative structures Separation The implicative tripos Concl

Entailment

Let A = (A ,4,→,S) be an implicative algebra

The separator S ⊆ A induces a relation of entailment

a `S b ≡ (a→ b) ∈ S (for all a, b ∈ A)

The relation a `S b is clearly a preorder on A , whose corresponding
equivalence relation a`S is given by:

a a`S b ≡ (a→ b) ∈ S and (b → a) ∈ S

⇔ (a→ b)× (b → a) ∈ S

In the quotient A /S := A /a`S , the preorder `S induces an
order ≤S defined by

[a] ≤S [b] ≡ a `S b

(Writing [a] the equivalence class of a modulo S)

Intro Implicative structures Separation The implicative tripos Concl

The induced Heyting algebra

Proposition

Let A = (A ,4,→,S) be an implicative algebra

1 The quotient poset H = (A /S ,≤S) is a Heyting algebra, where:

[a]→H [b] = [a→ b]

[a] ∧H [b] = [a× b] [a] ∨H [b] = [a + b]

⊥H = [⊥] >H = [>] = S

2 When A is classical (i.e. ccA ∈ S), this poset is a Boolean algebra

The poset H = (A /S ,≤S) is called the Heyting algebra induced by A

Remarks:

The Heyting algebra H is in general not complete

Beware! The ordering ≤S on H comes from `S (entailment), and not
from 4 (subtyping). However, we have: a 4 b ⇒ [a] ≤S [b].

Intro Implicative structures Separation The implicative tripos Concl

Maximal separators (1/2)

Although separators are not filters (w.r.t. the order 4), they can be
manipulated similarly to filters. For instance:

We call a maximal separator any separator S ⊆ A that is consistent
and maximal (w.r.t. inclusion) among consistent separators

By Zorn’s lemma, we easily check that any consistent separator can
be extended into a maximal separator

Trivial Boolean algebra

S ⊆ A is a maximal separator if and only if the induced Heyting algebra
(A /S ,≤S) is the trivial Boolean algebra:

S ⊆ A maximal iff (A /S ,≤S) ≈ 2

Remark: Works even when the maximal separator S ⊆ A is not classical!

Intro Implicative structures Separation The implicative tripos Concl

Maximal separators (2/2)

Remark: There are non-classical maximal separators!

Typical example is given by intuitionistic realizability:

Let (A ,4,→) be the implicative structure induced by a total
combinatory algebra (P, · , k, s):

A := P(P) (sets of combinators)

a 4 b := a ⊆ b (inclusion)

a→ b := {z ∈ P : ∀x ∈ a, z · x ∈ b} (Kleene’s implication)

Let S = P(P) \ {∅} = A \ {⊥}. We easily check that S is a
consistent separator, obviously maximal. Hence: A /S ≈ 2.

Identity A /S ≈ 2 reflects the fact that in intuitionistic
realizability, we have either φ or ¬φ for each closed formula φ.

On the other hand, we have: ccA =
k

a

((¬a→ a)→ a) = ∅

(Indeed, from a realizer t ∈ ccA , we would easily solve the halting problem)

Intro Implicative structures Separation The implicative tripos Concl

Separators and filters

In the theory of implicative algebras, separators play the same role
as filters in the theory of Heyting algebras.

However, separators S ⊆ A are in general not filters:

a, b ∈ S ⇒ ab ∈ S

a, b ∈ S ⇒ a× b ∈ S

a, b ∈ S 6⇒ a f b ∈ S

On the other hand, in the particular case where A is (derived from)
a complete Heyting algebra, we have: separator = filter

We shall now study in the general case the situations where a
separator happens to be also a filter

Intro Implicative structures Separation The implicative tripos Concl

Non deterministic choice

Given an implicative structure A = (A ,4,→), we let:

tA :=
k

a,b

(a→ b → a f b) (non deterministic choice)

We shall also use the symbol t (non-deterministic choice operator) as an
extra constant of the λ-calculus (like cc), that is interpreted by tA

In the λc -calculus, universal realizers of the “type” tA are the
instructions t with the non-deterministic evaluation rule:

t ? u · v · π �

{
u ? π

v ? π
[Guillermo & M., 2014]

Intro Implicative structures Separation The implicative tripos Concl

Non deterministic choice and parallel ‘or’

Let NatA (n) :=
k

a∈A N

(
a(0)→

k

p∈N

(
a(p)→ a(p + 1)

)
→ a(n)

)
Fact

1 tA = (λxy . x)A f (λxy . y)A (tt f ff)

2 tA a`S
k

n∈N

NatA (n) (in any separator S ⊆ A)

Non deterministic choice is related to the parallel ‘or’

p-orA := (⊥ → > → ⊥)f (> → ⊥ → ⊥) (parallel ‘or’)

Fact

1 tA 4 p-orA

2 tA a`S p-orA
(in any classical separator S ⊆ A)

Intro Implicative structures Separation The implicative tripos Concl

Non deterministic choice, parallel ‘or’ and filters

Let A = (A ,4,→) be an implicative structure

It is clear that a separator S ⊆ A is a filter if and only if it is closed
under binary meets: a, b ∈ S ⇒ a f b ∈ S (for all a, b ∈ A)

Proposition (Characterizing filters)

1 A separator S ⊆ A is a filter if and only if: tA ∈ S

2 A classical separator S ⊆ A is a filter if and only if: p-orA ∈ S

Proof.

1 (⇒) In any separator S ⊆ A , we have (λxy . x)A , (λxy . y)A ∈ S . So
that when S is a filter, we get tA = (λxy . x)A f (λxy . y)A ∈ S .

(⇐) If tA ∈ S , then (a→ b → a f b) ∈ S for all a, b ∈ A . So that if
a, b ∈ S , we get a f b (applying the modus ponens twice in S).

2 Obvious from item 1, since: tA ∈ S iff p-orA ∈ S .

Intro Implicative structures Separation The implicative tripos Concl

Generating separators

Given any subset X ⊆ A , we write:

App(X) the applicative algebra generated by X , i.e. the smallest
subset of A containing X and closed under application

↑X the upwards closure of X in A (w.r.t. 4)

Lemma (Separator generated by a subset of A)

For all X ⊆ A , the subset ↑App(X ∪ {KA ,SA }) ⊆ A is the
smallest separator of A containing X as a subset

A separator S ⊆ A is finitely generated when it is of the form

S = ↑App(X) for some finite subset X ⊆ A

We observe that both separators S0
J (A) ⊆ A (intuitionistic core)

and S0
K (A) ⊆ A (classical core) are finitely generated

Intro Implicative structures Separation The implicative tripos Concl

Finitely generated separators and principal filters (1/4)

Theorem

Given a separator S ⊆ A , the following are equivalent:

1 S is finitely generated and tA ∈ S

2 S is a principal filter: S = ↑{Θ} for some Θ ∈ S

(Θ is called the universal proof of S)

3 The induced Heyting algebra H := (A /S ,≤S) is complete, and
the surjection [·] : A → H commutes with infinitary meets:[k

i∈I

ai
]

=
∧
i∈I

[ai]

In model theoretic terms, this situation corresponds to a collapse of
(intuitionistic/classical) realizability into (Kripke/Cohen) forcing!

Intro Implicative structures Separation The implicative tripos Concl

Finitely generated separators and principal filters (2/4)

Proof.

S finitely generated + tA ∈ S ⇒ S principal filter

Suppose that S = ↑App({g1, g2, . . . , gn}) is a filter. Since S is a filter,

we have tA :=
k

a,b

(a→ b → a f b) ∈ S , and more generally:

tA
k :=

k

a1,...,ak

(a1 → · · · → ak → a1 f · · ·f ak)

=
k

i=1..k

(λx1 · · · xk . xi)A ∈ S

for all k ≥ 1. We let: Θ := (Y (λr .tA
n+1 g1 · · · gn (r r)))A ∈ S

where Y ≡ (λyf . f (yyf))(λyf . f (yyf)) is Turing’s fixpoint combinator.

By construction we have Θ 4 tA
n+1 g1 · · · gn (Θ Θ), hence:

Θ 4 g1, ..., Θ 4 gn and Θ 4 Θ Θ

By induction, we get Θ 4 a for all a ∈ App(g1, . . . , gn), and thus Θ 4 a
for all a ∈ S . Therefore: Θ = min(S) and S = ↑{Θ}. (...)

Intro Implicative structures Separation The implicative tripos Concl

Finitely generated separators and principal filters (3/4)

Proof (continued).

S principal filter ⇒ H complete + commutation property

Suppose that S = ↑{Θ}, and let [ai]i∈I ∈ H I be a family of elements of H,
defined from a family of representatives (ai)i∈I ∈ A I . Since

(c
i∈I ai

)
4 ai

for all i ∈ I ,
[c

i∈I ai
]

is a lower bound of the family [ai]i∈I in H.

Conversely, if [b] is a lower bound of the family [ai]i∈I in H, we have
(b → ai) ∈ S for all i ∈ I . And since S = ↑{Θ}, we get Θ 4 (b → ai) for
all i ∈ I , so that:

Θ 4
k

i∈I

(b → ai) = b →
k

i∈I

ai .

Hence [b] ≤S

[c
i∈I ai

]
. Therefore,

[c
i∈I ai

]
is the g.l.b. of the family

[ai]i∈I , hence the commutation property
[c

i∈I ai
]

=
∧

i∈I [ai]. (...)

Intro Implicative structures Separation The implicative tripos Concl

Finitely generated separators and principal filters (4/4)

Proof (continued).

H complete + commut. property ⇒ S finitely generated + tA ∈ S

Suppose that H = A /S is complete and that the surjection [·] : A → H
commutes with infinitary meets. Let Θ =

c
S . From the commutation

property, we have:

[Θ] =
[k
a∈S

a
]

=
∧
a∈S

[a] =
∧
a∈S

>H = >H ,

hence Θ ∈ S , so that Θ = min(S) and S = ↑{Θ}. Therefore the
separator S is a (principal) filter, hence we have tA ∈ S .

S is also finitely generated, by the unique generator Θ.

Intro Implicative structures Separation The implicative tripos Concl

Uniform existential quantification

We say that an implicative structure A = (A ,4,→) has uniform
existential quantification when for all (ai)i∈I ∈ A I and b ∈ A :

(∗)
k

i∈I

(ai → b) =

(j

i∈I

ai

)
→ b

This equality (that corresponds to ∃-elim) holds in:
all complete Heyting/Boolean algebras
all the implicative algebras induced by total combinatory algebras
(P, · , k, s) (intuitionistic realizability)

When (∗) holds, we can let: ∃
i∈I

ai :=
j

i∈I

ai

Proposition

If A has uniform existential quantifications, then:

1 p-or := (⊥ → > → ⊥) f (> → ⊥ → ⊥) = >
2 All classical separators S ⊆ A are filters

Morality: Uniform ∃/∀ (both) are incompatible with classical realizability

Intro Implicative structures Separation The implicative tripos Concl

Plan

1 Introduction

2 Implicative structures

3 Separation

4 The implicative tripos

5 Conclusion

Intro Implicative structures Separation The implicative tripos Concl

Road map

We now want to prove that each implicative algebra (A ,4,→,S)
induces a tripos P : Setop → HA

Recall that HA is the category of Heyting algebras

Intuitively: tripos = categorical model of higher-order logic

We already know how to construct similar triposes from:

Complete Heyting/Boolean algebras (forcing triposes)

Partial combinatory algebras (realizability triposes)

Abstract Krivine structures (AKS) [Streicher’12]

Our aim is thus to subsume all the above constructions

Triposes are based on the notion of first-order hyperdoctrine, which
is the categorical formulation of first-order theories (or models)

Intro Implicative structures Separation The implicative tripos Concl

Preliminaries: Galois connections and adjoints

A Galois connection between two posets A and B is a pair of
functions F : A→ B and G : B → A such that:

F (x) ≤ y ⇔ x ≤ G (y) (for all x ∈ A, y ∈ B)

In this situation (notation: F a G), we observe that:

1 F : A→ B and G : B → A are necessarily monotonic

2 F : A→ B is uniquely determined by G : B → A:

F (x) = min{y ∈ B : x ≤ G(y)} (for all x ∈ A)

F is called the left adjoint of G , and written F = GL

3 G : B → A is uniquely determined by F : A→ B:

G(y) = max{x ∈ A : F (x) ≤ y} (for all y ∈ B)

G is called the right adjoint of F , and written G = FR

Intro Implicative structures Separation The implicative tripos Concl

Preliminaries: the category HA of Heyting algebras

Morphisms of Heyting algebras

Given two Heyting algebras H, H ′, a function F : H → H ′ is a morphism
of Heyting algebras when for all x , y ∈ H:

F (x ∧ y) = F (x) ∧ F (y) F (>) = >
F (x ∨ y) = F (x) ∨ F (y) F (⊥) = ⊥
F (x → y) = F (x)→ F (y)

A morphism of Heyting algebras is thus a morphism of bounded lattices that also
preserves Heyting’s implication

In what follows, we shall mainly consider morphisms of Heyting
algebras F : H → H ′ with left & right adjoints FL,FR : H ′ → H

When they exist, both adjoints are monotonic and unique, but they
are in general not morphisms of Heyting algebras

Note that each isomorphism F : H → H ′ has left and right adjoints:

FL = FR = F−1

Intro Implicative structures Separation The implicative tripos Concl

Preliminaries: Cartesian categories

Recall that a Cartesian category is a category C with a terminal object
1 ∈ C and binary products X × Y ∈ C for all objects X × Y .

(So that C has all finite products)

Given X ,Y ∈ C, we write:

πX ,Y ∈ C(X × Y ,X) (1st projection)

π′X ,Y ∈ C(X × Y ,Y) (2nd projection)

τX ,Y := 〈π′X ,Y , πX ,Y 〉 ∈ C(X × Y ,Y × X) (iso of exchange)

δX := 〈idX , idX 〉 ∈ C(X ,X × X) (arrow of duplication)

Intro Implicative structures Separation The implicative tripos Concl

First-order hyperdoctrines: definition

Let C be a Cartesian category

Definition (First-order hyperdoctrine)

A first-order hyperdoctrine over C is a functor P : Cop → HA such that:

(1) For all Z ,X ∈ C, the map P(πZ ,X) : P(Z)→ P(Z × X)
has left and right adjoints (∃X)|Z , (∀X)|Z : P(Z × X)→ P(Z)

(2) The following diagrams (Beck-Chevalley conditions)

P(Z × X)
(∃X)|Z // P(Z)

P(Z ′ × X)

P(f×idX)

OO

(∃X)|Z′
// P(Z ′)

P(f)

OO P(Z × X)
(∀X)|Z // P(Z)

P(Z ′ × X)

P(f×idX)

OO

(∀X)|Z′
// P(Z ′)

P(f)

OO

commute for all X ,Z ,Z ′ ∈ C and f ∈ C(Z ,Z ′)

(3) Each X ∈ C has an equality predicate (=X) ∈ P(X × X), such that:

(=X) ≤ q ⇔ > ≤ P(δX)(q) (q ∈ P(X × X))

Intro Implicative structures Separation The implicative tripos Concl

First-order hyperdoctrines: some intuitions (1/5)

Intuitively, a first-order hyperdoctrine P : Cop → HA is an abstract
description of a particular intuitionistic or classical theory. Note that such
a description also applies to models, that can be viewed as theories.

In this framework:

The Cartesian category C represents the domain of the discourse

The objects of C represent types, or contexts

The arrows of C represent functions, or substitutions

The Cartesian product X × Y (in C) represents the product
of two types, or the concatenation of two contexts

The terminal object 1 (∈ C) represents the singleton type,
or the empty context

The (contravariant) functor P : Cop → HA associates to each
object X ∈ C the Heyting algebra P(X) of predicates over X

Intro Implicative structures Separation The implicative tripos Concl

First-order hyperdoctrines: some intuitions (2/5)

The (contravariant) functor P : Cop → HA associates to each
object X ∈ C the Heyting algebra P(X) of predicates over X

Each predicate p ∈ P(X) can be viewed as an abstract
formula p(x) depending on a variable x : X . Intuitively:

p ≤ q means: (∀x :X) (p(x)⇒ q(x))

p = q means: (∀x :X) (p(x)⇔ q(x))

(So that in this description, the ordering ≤ represents inclusion
whereas equality represent extensional equality of predicates)

P(X) is a Heyting algebra, which means that predicates p, q ∈ P(X)
can be assembled using the constructions

⊥, >, p ∧ q, p ∨ q, p → q

The axioms of Heyting algebras express that all the deduction rules
of intuitionistic propositional calculus are valid

Intro Implicative structures Separation The implicative tripos Concl

First-order hyperdoctrines: some intuitions (3/5)

The correspondence X 7→ P(X) is functorial, since each arrow
f ∈ C(X ,Y) induces a substitution map P(f) : P(Y)→ P(X):

Given p ∈ P(Y), the predicate P(f)(p) ∈ P(X) represents the
pre-image of p by f : P(f)(p) ≡ “p ◦ f ”

Or, if we see p as a formula p(y) (in the context y : Y)

then P(f)(p) is the formula p(y){y := f (x)} (in the context x : X)

The fact that P(f) : P(Y)→ P(X) is a morphism of HAs
expresses that substitution commutes with all connectives:

(p(y) ∧ q(y)){y := f (x)} ≡ p(f (x)) ∧ q(f (x))

(p(y) ∨ q(y)){y := f (x)} ≡ p(f (x)) ∨ q(f (x))

(p(y)→ q(y)){y := f (x)} ≡ p(f (x))→ q(f (x))

Identities P(idX) = idP(X) and P(g ◦ f) = P(f) ◦ P(g) express
that the operation of substitution (or pre-image) is contravariant

Intro Implicative structures Separation The implicative tripos Concl

First-order hyperdoctrines: some intuitions (4/5)

Axiom (1) says that the map P(πZ ,X) : P(Z)→ P(Z × X)
associated to the 1st projection πZ ,X ∈ C(Z × X ,Z)
has both adjoints (∃X)|Z , (∀X)|Z : P(Z × X)→ P(Z)

Recall that these adjoints are unique and monotonic; but in general,
they are not morphisms of Heyting algebras.

Given p ∈ P(Z × X):

(∃X)|Z (p) means: (∃x :X) p(z , x)

(∀X)|Z (p) means: (∀x :X) p(z , x)
(in context z : Z)

Given p ∈ P(Z × X) and q ∈ P(Z), the adjunctions

(∃X)|Z (p) ≤ q ⇔ p ≤ P(πZ ,X)(q)

q ≤ (∀X)|Z (p) ⇔ P(πZ ,X)(q) ≤ p

represent the logical equivalences:

(∀z :Z)[(∃x :X) p(z, x)⇒ q(z)] ⇔ (∀z :Z , x :X)[p(z, x)⇒ q(z)]

(∀z :Z)[q(z)⇒ (∀x :X) p(z, x)] ⇔ (∀z :Z , x :X)[q(z)⇒ p(z, x)]

Intro Implicative structures Separation The implicative tripos Concl

First-order hyperdoctrines: some intuitions (5/5)

The Beck-Chevalley conditions (2)

P(Z × X)
(∃X)|Z // P(Z)

P(Z ′ × X)

P(f×idX)

OO

(∃X)|Z′
// P(Z ′)

P(f)

OO
P(Z × X)

(∀X)|Z // P(Z)

P(Z ′ × X)

P(f×idX)

OO

(∀X)|Z′
// P(Z ′)

P(f)

OO

express the behavior of substitution w.r.t. quantifiers:(
(∃x :X) p(z ′, x)

)
{z ′ := f (z)} ≡ (∃x :X)

(
p(z ′, x){z ′ := f (z), x := x}

)(
(∀x :X) p(z ′, x)

)
{z ′ := f (z)} ≡ (∀x :X)

(
p(z ′, x){z ′ := f (z), x := x}

)
Axiom (3) expresses that the map P(δX) : P(X × X)→ P(X) has
a left adjoint (=X) ∈ P(X × X) at the point > ∈ P(X):

(=X) ≤ q ⇔ > ≤ P(δX)(q) (q ∈ P(X × X))

The above adjunction corresponds to the logical equivalence:

(∀x , y :X)[x = y ⇒ q(x , y)] ⇔ (∀x :X)[> ⇒ q(x , x)]

Intro Implicative structures Separation The implicative tripos Concl

First-order hyperdoctrines: definition (recall)

Let C be a Cartesian category

Definition (First-order hyperdoctrine)

A first-order hyperdoctrine over C is a functor P : Cop → HA such that:

(1) For all Z ,X ∈ C, the map P(πZ ,X) : P(Z)→ P(Z × X)
has left and right adjoints (∃X)|Z , (∀X)|Z : P(Z × X)→ P(Z)

(2) The following diagrams (Beck-Chevalley conditions)

P(Z × X)
(∃X)|Z // P(Z)

P(Z ′ × X)

P(f×idX)

OO

(∃X)|Z′
// P(Z ′)

P(f)

OO P(Z × X)
(∀X)|Z // P(Z)

P(Z ′ × X)

P(f×idX)

OO

(∀X)|Z′
// P(Z ′)

P(f)

OO

commute for all X ,Z ,Z ′ ∈ C and f ∈ C(Z ,Z ′)

(3) Each X ∈ C has an equality predicate (=X) ∈ P(X × X), such that:

(=X) ≤ q ⇔ > ≤ P(δX)(q) (q ∈ P(X × X))

Intro Implicative structures Separation The implicative tripos Concl

First-order hyperdoctrines: some properties (1/2)

Let P : Cop → HA be a first-order hyperdoctrine

Using equality predicates (=X) ∈ P(X × X), one can show more
generally that all substitution maps P(f) : P(Y)→ P(X) have
left and right adjoints ∃(f),∀(f) : P(X)→ P(Y)

Intuitively, given a predicate p ∈ P(X), the two predicates
∃(f)(p),∀(f)(p) ∈ P(Y) are defined by:(

∃(f)(p)
)
(y) ≡ (∃x :X) (y = f (x) ∧ p(x))(

∀(f)(p)
)
(y) ≡ (∀x :X) (y = f (x)⇒ p(x))

Intro Implicative structures Separation The implicative tripos Concl

First-order hyperdoctrines: some properties (2/2)

In the definition of hyperdoctrines, some authors require that the
Beck-Chevalley condition holds for all pullback squares in C:

X
f1 //

f2

��

X1

g1

��
X2 g2

// Y

⇒

P(X)
∃(f1) // P(X1)

P(X2)

P(f2)

OO

∃(g2)
// P(Y)

P(g1)

OO P(X)
∀(f1) // P(X1)

P(X2)

P(f2)

OO

∀(g2)
// P(Y)

P(g1)

OO

(full Beck-Chevalley condition)

Beware! The full Beck-Chevalley is strictly stronger than the
Beck-Chevalley condition restricted to the projections
(there are counter-examples with some syntactic hyperdoctrines)

However, this stronger condition holds in most models, and in
particular in all forcing/realizability/implicative triposes

Intro Implicative structures Separation The implicative tripos Concl

Triposes: definition

Let C be a Cartesian closed category

Definition (Tripos)

A tripos over C is a first-order hyperdoctrine P : Cop → HA given with
an object Prop ∈ C and a generic predicate tr ∈ P(Prop), such that:

For all X ∈ C, each predicate p ∈ P(X) is represented by an arrow
fp ∈ C(X ,Prop) (not necessarily unique) such that:

P(tr)(fp) = p

Intuitively:

The Cartesian closed category C is a model of the simply-typed λ-calculus

Object Prop ∈ C is the type of propositions

Generic predicate tr ∈ P(Prop) is the truth predicate

For each predicate p ∈ P(X), the corresponding arrow fp ∈ C(X ,Prop) is
a propositional function representing p: tr(fp(x)) ≡ p(x)

In what follows, we shall only consider triposes over the c.c.c. Set

Intro Implicative structures Separation The implicative tripos Concl

Example: forcing triposes

Proposition and definition (Forcing triposes)

Given a complete Heyting (or Boolean) algebra H:

1 The functor P := H(–) : Setop → HA is a tripos

2 For all X ,Y ∈ Set, f : X → Y :

P(X) := HX is a complete HA

P(f) : P(Y)→ P(X) is a morphism of complete HAs

3 Prop := H and tr := idH (generic predicate)

Such a tripos is called a forcing tripos

Forcing triposes are the ones underlying Kripke (or Cohen) forcing

Intro Implicative structures Separation The implicative tripos Concl

Product of a family of implicative structures (1/2)

Given a family of implicative structures (Ai)i∈I = (Ai ,4i ,→i)i∈I

The product A =
∏

i∈I Ai of the family (Ai)i∈I = (Ai ,4i ,→i)i∈I is
clearly an implicative structure, where:

(ai)i∈I 4 (bi)i∈I ≡ (∀i ∈ I) ai 4i bi

(ai)i∈I → (bi)i∈I := (ai →i bi)i∈I

(product ordering)

(componentwise)

Proposition (Properties of the product
∏

i∈I Ai)

In the product A =
∏

i∈I Ai , we have:

1 ab = (aibi)i∈I for all a, b ∈ A

2 (t)A =
(
(t)Ai

)
i∈I for all closed λ-terms t

3 SA =
(
SAi

)
i∈I KA =

(
KAi

)
i∈I ccA =

(
ccAi

)
i∈I etc.

4 a× b = (ai × bi)i∈I , a + b = (ai + bi)i∈I for all a, b ∈ A

Intro Implicative structures Separation The implicative tripos Concl

Product of a family of implicative structures (2/2)

Given a family of implicative structures (Ai)i∈I = (Ai ,4i ,→i)i∈I

The product S =
∏

i∈I Si of a family of separators (Si ⊆ Ai)i∈I is
clearly a separator of the product A =

∏
i∈I Ai

Moreover, we have: a `S b ⇔ (∀i ∈ I) ai `Si bi (for all a, b ∈ A)

Proposition (Factorization of the quotient)

A /S =
(∏
i∈I

Ai

) / (∏
i∈I

Si
)
∼=
∏
i∈I

(Ai/Si) (iso. in HA)

Beware! We only have the inclusions

S0(A) ⊆
∏
i∈I

S0(Ai) (intuitionistic core)

S0
K (A) ⊆

∏
i∈I

S0
K (Ai) (classical core)

Intro Implicative structures Separation The implicative tripos Concl

Power of an implicative structure

Given an implicative structure A = (A ,4,→) and a set I , we write

A I := (A I ,4I ,→I) :=
∏

i∈I A (power implicative structure)

Each separator S ⊆ A induces two separators in A I :

The power separator S I :=
∏

i∈I S ⊆ A I ,

for which we have: A I/S I ∼= (A /S)I

The uniform power separator S [I] ⊆ S I ⊆ A I defined by:

S [I] :=
{

(ai)i∈I ∈ A I : (∃s ∈S)(∀i ∈ I) s 4 ai
}

= ↑δ(S)

where ↑δ(S) is the upwards closure (in A I) of the image of S through the
canonical map δ : A → A I defined by δ(a) := (i 7→ a) ∈ A I for all a ∈ A

In general, the inclusion S [I] ⊆ S I is strict!

Intro Implicative structures Separation The implicative tripos Concl

Properties of the uniform power separator

Let A = (A ,4,→) be an implicative structure, and I a set.

Each separator S ⊆ A induces a uniform power separator S [I] ⊆ A I

Proposition (Entailment w.r.t. S [I])

For all families a = (ai)i∈I , b = (bi)i∈I ∈ A I , we have:

a `S[I] b ⇔ (a→ b) ∈ S [I] ⇔
k

i∈I

(ai → bi) ∈ S

a a`S[I] b ⇔ (a↔ b) ∈ S [I] ⇔
k

i∈I

(ai ↔ bi) ∈ S

Recall that a↔ b := (a→ b)× (b → a) (in any implicative structure)

We can also notice that:

S0(A I) = S0(A)[I] ⊆
(
S0(A)

)I
(intuitionistic core of A I)

S0
K (A I) = S0

K (A)[I] ⊆
(
S0
K (A)

)I
(classical core of A I)

Intro Implicative structures Separation The implicative tripos Concl

Tripos associated to an implicative algebra (1/2)

Let (A ,S) = (A ,4,→,S) be an implicative algebra

For each set I , we let P(I) := A I/S [I]

The poset (P(I),≤S[I]) is a Heyting algebra, where:

[a]→ [b] = [(ai → bi)i∈I]

[a] ∧ [b] = [(ai × bi)i∈I] > = [(>)i∈I]

[a] ∨ [b] = [(ai + bi)i∈I] ⊥ = [(⊥)i∈I]

The correspondence I 7→ P(I) is functorial:

Each f : I → J induces a substitution map P(f) : P(J)→ P(I):

P(f)([(aj)j∈J]) := [(af (i))i∈I] ∈ P(I)

The map P(f) : P(J)→ P(I) is a morphism of Heyting algebras

P(idI) = idP(I) and P(g ◦ f) = P(f) ◦ P(g) (contravariance)

Therefore: P : Setop → HA is a (contravariant) functor

Intro Implicative structures Separation The implicative tripos Concl

Tripos associated to an implicative algebra (2/2)

Theorem (Associated tripos)

The functor P : Setop → HA is a tripos

Recall: Tripos = categorical model of higher-order logic

Each substitution map P(f) : P(J)→ P(I) has both left and
right adjoints ∃(f),∀(f) : P(I)→ P(J):

∃(f)
(
[(ai)i∈I]

)
:=

[(
∃i∈f−1(j) ai

)
j∈J

]
∈ P(J)

∀(f)
(
[(ai)i∈I]

)
:=

[(
∀i∈f−1(j) ai

)
j∈J

]
∈ P(J)

(+ satisfies the full Beck-Chevalley condition)

There is a propositional object Prop ∈ Set
together with a generic predicate tr ∈ P(Prop):

Prop := A tr := [idA] ∈ P(Prop)

Intro Implicative structures Separation The implicative tripos Concl

To sum up...

The above construction encompasses many well-known tripos
constructions:

Forcing triposes, which correspond to the case where (A ,4,→) is a
complete Heyting/Boolean algebra, and S = {>} (i.e. no quotient)

Triposes induced by total combinatory algebras... (int. realizability)

... and even by partial combinatory algebras, via some completion trick

Triposes induced by abstract Krivine structures (class. realizability)

As for any tripos, each implicative tripos can be turned into a topos
via the standard tripos-to-topos construction

Question: What do implicative triposes bring new w.r.t.

Forcing triposes (intuitionistic or classical)?

Intuitionistic realizability triposes?

Classical realizability triposes?

Intro Implicative structures Separation The implicative tripos Concl

The fundamental diagram (1/3)

Given an implicative algebra A = (A ,4,→,S) and a set I ,
the separator S ⊆ A induces two separators in A I :

The power separator S I ⊆ A I

The uniform power separator S [I] ⊆ S I ⊆ A I defined by:

S [I] :=
{

(ai)i∈I ∈ A I : (∃s ∈S)(∀i ∈ I) s 4 ai
}

We thus get the following (commutative) diagram: (in Set/HA)

A I
[·]/S[I] // //

[·]
/SI

����

A I/S [I] = P(I)

ĩd

{{{{

ρI

����

[(ai)i∈I]/S[I]_

��
A I/S I

αI

∼ // // (A /S)I = P(1)I ([ai]/S)i∈I

Intro Implicative structures Separation The implicative tripos Concl

The fundamental diagram (2/3)

A I
[·]/S[I] // //

[·]
/SI

����

A I/S [I] = P(I)

ĩd

{{{{

ρI

����

[(ai)i∈I]/S[I]_

��
A I/S I

αI

∼ // // (A /S)I = P(1)I ([ai]/S)i∈I

Proposition

The following are equivalent:

1 The map ρI : (A I/S [I])→ (A /S)I is injective

2 The map ρI : (A I/S [I])→ (A /S)I is an isomorphism (of HAs)

3 S [I] = S I

4 The separator S ⊆ A is closed under all I -indexed meets.

Intro Implicative structures Separation The implicative tripos Concl

The fundamental diagram (3/3)

A I
[·]/S[I] // //

[·]
/SI

����

A I/S [I] = P(I)

ĩd

{{{{

ρI

����

[(ai)i∈I]/S[I]_

��
A I/S I

αI

∼ // // (A /S)I = P(1)I ([ai]/S)i∈I

Proof.

Recall that in HA, a morphism is an iso if and only if it is bijective. Since ρ is
surjective and αI is an iso, it is clear that:

(1) ρ injective ⇔ (2) ρ iso. ⇔ ĩd iso. ⇔ (3) S[I] = S I

(3)⇒ (4) Let (ai)i∈I ∈ S I . Since S I = S[I] (by (3)), there is s ∈ S such that
s 4 ai for all i ∈ I . Hence s 4

c
i∈I ai ∈ S .

(4)⇒ (3) Let (ai)i∈I ∈ S I . By (4), we have that s :=
c

i∈I ai ∈ S. Since

s 4 ai for all i ∈ I , we get (ai)i∈I ∈ S[I]. Therefore: S I = S[I].

Intro Implicative structures Separation The implicative tripos Concl

Forcing triposes (recall)

Proposition and definition (Forcing triposes)

Given a complete Heyting (or Boolean) algebra H:

1 The functor P := H(–) : Setop → HA is a tripos

2 For all I , J ∈ Set, f : I → J:

P(I) := H I is a complete HA

P(f) : P(J)→ P(I) is a morphism of complete HAs

3 Prop := H and tr := idH (generic predicate)

Such a tripos is called a forcing tripos

Forcing triposes are the ones underlying Kripke (or Cohen) forcing

Each forcing tripos (induced by H) can be seen as an implicative
tripos, constructed from the implicative algebra

(A ,4,→,S) := (H,≤H ,→H , {>H})

Intro Implicative structures Separation The implicative tripos Concl

Isomorphism of triposes

Definition (Isomorphism of triposes)

Two triposes P,P′ : Setop → HA are isomorphic when there is a natural
isomorphism β : P⇒ P′ (in the category HA):

I

f

��

P(I)
βI

∼
// P′(I)

J P(J)

P(f)

OO

βJ

∼ // P′(J)

P′(f)

OO

We have seen that each Heyting tripos is isomorphic to a particular
implicative tripos, taking (A ,4,→,S) := (H,≤H ,→H , {>})

But more generally, what are the implicative triposes that are
isomorphic to a forcing tripos?

Intro Implicative structures Separation The implicative tripos Concl

Characterizing forcing triposes (1/4)

Theorem

Let P : Setop → HA be the tripos induced by an implicative algebra
(A ,4,→,S). Then the following are equivalent:

1 The tripos P is isomorphic to a forcing tripos

2 The separator S ⊆ A is a principal filter of A

3 The separator S ⊆ S is finitely generated and tA ∈ S

Remark: These conditions do not imply that (A ,4,→) is a Heyting algebra!
Counter-example: Krivine realizability with an instruction t (in the separator)

Proof.

We have already seen that (3) ⇔ (2).

So it remains to prove that (1) ⇒ (2) and (2) ⇒ (1) (...)

Intro Implicative structures Separation The implicative tripos Concl

Characterizing forcing triposes (2/4)

Proof (continued).

(2) ⇒ (1) When S ⊆ A is a principal filter of A , we have seen that
H := A /S is a complete Heyting algebra. Moreover, since S is closed
under arbitrary meets, the arrow ρI of the fundamental diagram

A I
[·]/S[I] // //

[·]
/SI

����

A I/S [I] = P(I)

ĩd

∼

{{{{

ρI∼

����
A I/S I

αI

∼ // // (A /S)I = H I

is an isomorphism of (complete) Heyting algebras for all sets I . It is also
clearly natural in I , so that we can take βI := ρI . (...)

Intro Implicative structures Separation The implicative tripos Concl

Characterizing forcing triposes (3/4)

Proof (continued).

(1) ⇒ (2) Assume that there is a natural isomorphism βI : P(I) →̃ H I

(in I) for some complete Heyting algebra H. In particular, we have
β1 : P(1) →̃ H1 = H, so that A /S = P(1) ∼= H is a complete HA.

Now, fix a set I , and write ci := {0 7→ i} : 1→ I for each i ∈ I .

Via the two (contravariant) functors P,H(–) : Setop → HA, we easily
check that the arrow ci : 1→ I is mapped to:

and

P(ci) = ρi : A /S [I]→ A /S

H(ci) = πi : H I → H

where:

ρi is the ith component of the surjection ρI : A I/S [I]� (A /S)I

of the fundamental diagram, given by: ρi ([a]/S[I]) = [ai]/S

πi is the ith projection from H I to H (...)

Intro Implicative structures Separation The implicative tripos Concl

Characterizing forcing triposes (4/4)

Proof (continued).

(1) ⇒ (2) (continued) We get the following commutative diagrams:

1

ci

��

A /S
β1

∼
// H

I A I/S [I]

P(ci)=ρi

OO

βI

∼ // H I

πi=H(ci)

OO (A /S)I
βI

1

∼
// H I

A I/S [I]

ρI =〈ρi 〉i∈I

OO

βI

∼ // H I

id=〈πi 〉i∈I∼

OO

1st commutative square (for i ∈ I) comes from the naturality of β

2nd commutative square is deduced from the first one by glueing the
arrows ρi and πi for all indices i ∈ I

From the 2nd commutative square, it is clear that ρI : A I/S [I]→ (A /S)I

is an isomorphism for all sets I . Therefore, the separator S ⊆ A is closed
under arbitrary meets, which means that it is a principal filter.

Intro Implicative structures Separation The implicative tripos Concl

Plan

1 Introduction

2 Implicative structures

3 Separation

4 The implicative tripos

5 Conclusion

Intro Implicative structures Separation The implicative tripos Concl

Conclusion (1/2)

We introduced implicative algebras, a simple algebraic structure that is
common to forcing and realizability (intuitionistic & classical)

Relies on the fundamental idea that truth values can be manipulated
as generalized realizers (via the operations of the λ-calculus)

Proof = Program = Type = Formula

Criterion of truth given by a separator (generalizing filters)

Each implicative algebra induces a tripos, thus encompassing:

All forcing triposes (intuitionistic & classical)
Most intuitionistic realizability triposes
All classical realizability triposes

In this structure: forcing = non deterministic realizability

Classical implicative structures have the very same expressiveness as
Abstract Krivine Structures (with a much lighter machinery)

Intro Implicative structures Separation The implicative tripos Concl

Conclusion (2/2)

However, implicative algebras can be used directly to construct models of
Zermelo-Fraenkel set theory (ZF/IZF)

Same technique as for constructing Boolean-valued models of ZF
(or realizability models of IZF)

Technically, the construction is not the same in the intuitionistic
case (IZF) and the classical case (ZF) (due to reasons of polarity)

Classical interpretation of dependent choices (DC) using quote

A particular model with fascinating properties: the model of threads

[Krivine 12] Realizability algebras II: new models of ZF + DC

Open problems & Future work:

Structure of classical realizability models of set theory?

What is the equivalent of the generic set?

New relative consistency results?

	Introduction
	Implicative structures
	Separation
	The implicative tripos
	Conclusion

